Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cost-effectiveness of heart failure therapies

Abstract

Heart failure (HF) is a leading cause of morbidity and mortality worldwide. Management of HF involves accurate diagnosis and implementation of evidence-based treatment strategies. Costs related to the care of patients with HF have increased substantially over the past 2 decades, partly owing to new medications and diagnostic tests, increased rates of hospitalization, implantation of costly novel devices and, as the disease progresses, consideration for heart transplantation, mechanical circulatory support, and end-of-life care. Not surprisingly, HF places a huge burden on health-care systems, and widespread implementation of all potentially beneficial therapies for HF could prove unrealistic for many, if not all, nations. Cost-effectiveness analyses can help to quantify the relationship between clinical outcomes and the economic implications of available therapies. This Review is a critical overview of cost-effectiveness studies on key areas of HF management, involving pharmacological and nonpharmacological clinical therapies, including device-based and surgical therapeutic strategies.

Key Points

  • Heart failure is a prevalent clinical syndrome, associated with morbidity and continuously increasing costs

  • In the past 2 decades, several costly new therapeutic options have emerged for the treatment of heart failure

  • Cost-effectiveness studies are a validated method of calculating the incremental benefit and cost of novel health-care technologies

  • Most standard-of-care pharmacological therapies (such as angiotensin-converting-enzyme inhibitors, β-blockers, and digoxin) are cost-saving or have highly favourable incremental cost-effectiveness ratios

  • Cardiac resynchronization is a device-based therapy with a reasonable incremental cost-effectiveness ratio for most health-care settings

  • Mechanical circulatory support devices evaluated in cost-effectiveness studies are not attractive from an economic perspective

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HF framework to guide management strategies according to the ACC and the AHA staging system.

Similar content being viewed by others

References

  1. Rathi, S. & Deedwania, P. C. The epidemiology and pathophysiology of heart failure. Med. Clin. North Am. 96, 881–890 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Stewart, S., MacIntyre, K., Capewell, S. & McMurray, J. J. Heart failure and the aging population: an increasing burden in the 21st century? Heart 89, 49–53 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heidenreich, P. A. et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123, 933–944 (2011).

    Article  PubMed  Google Scholar 

  4. Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8, 30–41 (2011).

    Article  PubMed  Google Scholar 

  5. Schmidt, M. I. et al. Chronic non-communicable diseases in Brazil: burden and current challenges. Lancet 377, 1949–1961 (2011).

    Article  PubMed  Google Scholar 

  6. Braunschweig, F., Cowie, M. R. & Auricchio, A. What are the costs of heart failure? Europace 13, ii13–ii17 (2011).

    Article  PubMed  Google Scholar 

  7. Teng, T. H., Finn, J., Hobbs, M. & Hung, J. Heart failure: incidence, case fatality, and hospitalization rates in Western Australia between 1990 and 2005. Circ. Heart Fail. 3, 236–243 (2010).

    Article  PubMed  Google Scholar 

  8. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  9. Araujo, D. V., Tavares, L. R., Verissimo, R., Ferraz, M. B. & Mesquita, E. T. Cost of heart failure in the Unified Health System [Portuguese]. Arq. Bras. Cardiol. 84, 422–427 (2005).

    PubMed  Google Scholar 

  10. Mark, D. B. & Hlatky, M. A. Medical economics and the assessment of value in cardiovascular medicine: Part I. Circulation 106, 516–520 (2002).

    Article  PubMed  Google Scholar 

  11. Miller, W., Robinson, L. A. & Lawrence, R. S. (Eds) Valuing Health for Regulatory Cost-Effectiveness Analysis (National Academies Press, 2006).

    Google Scholar 

  12. Arnold, S. V., Cohen, D. J. & Magnuson, E. A. Cost-effectiveness of oral antiplatelet agents—current and future perspectives. Nat. Rev. Cardiol. 8, 580–591 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, X., Wang, L. & Li, Y. Methodological issues in cost-effectiveness studies: a brief overview. J. Evid. Based Med. 3, 201–204 (2010).

    Article  PubMed  Google Scholar 

  14. Barbieri, M. et al. What do international pharmacoeconomic guidelines say about economic data transferability? Value Health 13, 1028–1037 (2010).

    Article  PubMed  Google Scholar 

  15. Weintraub, W. S., Cole, J. & Tooley, J. F. Cost and cost-effectiveness studies in heart failure research. Am. Heart J. 143, 565–576 (2002).

    Article  PubMed  Google Scholar 

  16. Drummond, M. Pharmacoeconomics: friend or foe? Ann. Rheum. Dis. 65 (Suppl. 3), iii44–iii47 (2006).

    PubMed  PubMed Central  Google Scholar 

  17. Eichler, H. G., Kong, S. X., Gerth, W. C., Mavros, P. & Jönsson, B. Use of cost-effectiveness analysis in health-care resource allocation decision-making: how are cost-effectiveness thresholds expected to emerge? Value Health 7, 518–528 (2004).

    Article  PubMed  Google Scholar 

  18. Clement, F. M. et al. Using effectiveness and cost-effectiveness to make drug coverage decisions: a comparison of Britain, Australia and Canada. JAMA 302, 1437–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Appleby, J., Devlin, N., Parkin, D., Buxton, M. & Chalkidou, K. Searching for cost effectiveness thresholds in the NHS. Health Policy 91, 239–245 (2009).

    Article  PubMed  Google Scholar 

  20. Torosoff, M., Sader, C. & Philbin, E. in Cardiovascular Health Care Economics (Ed. Weintraub, W. S.) 529–584 (Humana Press, 2003).

    Google Scholar 

  21. Mejhert, M. Long-term health-care consumption and cost expenditure in systolic heart failure. Eur. J. Intern. Med. 24, 260–265 (2013).

    Article  PubMed  Google Scholar 

  22. Rohde, L. E. et al. Health outcomes in decompensated congestive heart failure: a comparison of tertiary hospitals in Brazil and United States. Int. J. Cardiol. 102, 71–77 (2005).

    Article  PubMed  Google Scholar 

  23. Jaarsma, T. et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch. Intern. Med. 168, 316–324 (2008).

    Article  PubMed  Google Scholar 

  24. Postmus, D. et al. A trial-based economic evaluation of 2 nurse-led disease management programs in heart failure. Am. Heart J. 162, 1096–1104 (2011).

    Article  PubMed  Google Scholar 

  25. Chan, D. C., Heidenreich, P. A., Weinstein, M. C. & Fonarow, G. C. Heart failure disease management programs: a cost-effectiveness analysis. Am. Heart J. 155, 332–338 (2008).

    Article  PubMed  Google Scholar 

  26. Miller, G., Randolph, S., Forkner, E., Smith, B. & Galbreath, A. D. Long-term cost-effectiveness of disease management in systolic heart failure. Med. Decis. Making 29, 325–333 (2009).

    Article  PubMed  Google Scholar 

  27. Chen, Y.-H. et al. Assessment of the clinical outcomes and cost-effectiveness of the management of systolic heart failure in Chinese patients using a home-based intervention. J. Int. Med. Res. 38, 242–252 (2010).

    Article  PubMed  Google Scholar 

  28. Hebert, P. L. et al. Cost-effectiveness of nurse-led disease management for heart failure in an ethnically diverse urban community. Ann. Intern. Med. 149, 540–548 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Adlbrecht, A. et al. Cost analysis and cost-effectiveness of NT-proBNP-guided heart failure specialist care in addition to home-based nurse care. Eur. J. Clin. Invest. 41, 315–322 (2011).

    Article  PubMed  Google Scholar 

  30. Smith, B., Hughes-Cromwick, P. F., Forkner, E. & Galbreath, A. D. Cost-effectiveness of telephonic disease management in heart failure. Am. J. Manag. Care 14, 106–115 (2008).

    PubMed  Google Scholar 

  31. Gregory, D. et al. Hospital cost effect of a heart failure disease management program: the Specialized Primary and Networked Care in Heart Failure (SPAN-CHF) trial. Am. Heart J. 151, 1013–1018 (2006).

    Article  PubMed  Google Scholar 

  32. Göhler, A. et al. Decision-analytic evaluation of the clinical effectiveness and cost-effectiveness of management programs in chronic heart failure. Eur. J. Heart Fail. 10, 1026–1032 (2008).

    Article  PubMed  Google Scholar 

  33. Wijeysundera, H. C. et al. Cost-effectiveness of specialized multidisciplinary heart failure clinics in Ontario, Canada. Value Health 13, 915–921 (2010).

    Article  PubMed  Google Scholar 

  34. Reed, S. D. et al. Economic evaluation of the HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) randomized controlled trial an exercise training study of patients with chronic heart failure. Circ. Cardiovasc. Qual. Outcomes 3, 374–381 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kühr, E. M., Ribeiro, R. A., Rohde, L. E. & Polanczyk, C. A. Cost-effectiveness of supervised exercise therapy in heart failure patients. Value Health 4 (5 Suppl. 1), S100–S107 (2011).

    Article  Google Scholar 

  36. Tavazzi, L. et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, doubleblind, placebo-controlled trial. Lancet 372, 1223–1230 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cowie, M. R. et al. Cost-effectiveness of highly purified omega-3 polyunsaturated fatty acid ethyl esters in the treatment of chronic heart failure: results of Markov modeling in a UK setting. Eur. J. Heart Fail. 13, 681–689 (2011).

    Article  PubMed  Google Scholar 

  38. Jessup, M. et al. 2009 focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, 1977–2016 (2009).

    Article  PubMed  Google Scholar 

  39. McMurray, J. J. et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 33, 1787–847 (2012).

    Article  PubMed  Google Scholar 

  40. Captopril Multicenter Research Group. A placebo-controlled trial of captopril in refractory chronic congestive heart failure. J. Am. Coll. Cardiol. 2, 755–763 (1983).

  41. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 316, 1429–1435 (1987).

  42. Riegger, G. A. for the Quinapril Research Group. Effects of quinapril on exercise tolerance in patients with mild to moderate heart failure. Eur. Heart J. 12, 705–711 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Cohn, J. N. et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 325, 303–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Paul, S. D., Kuntz, K. M., Eagle, K. A. & Weinstein, M. C. Costs and effectiveness of angiotensin converting enzyme inhibition in patients with congestive heart failure. Arch. Intern. Med. 154, 1143–1149 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Tsevat, J. et al. Cost-effectiveness of captopril therapy after myocardial infarction. J. Am. Coll. Cardiol. 26, 914–919 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Glick, H. et al. Costs and effects of enalapril therapy in patients with symptomatic heart failure: an economic analysis of the Studies of Left Ventricular Dysfunction (SOLVD) treatment trial. J. Card. Fail. 1, 371–380 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Butler, J. R. & Fletcher, P. J. A cost-effectiveness analysis of enalapril maleate in the management of congestive heart failure in Australia. Aust. N. Z. J. Med. 26, 89–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Erhardt, L., Ball, S., Andersson, F., Bergentoft, P. & Martinez, C. Cost-effectiveness in the treatment of heart failure with ramipril. A Swedish substudy of the AIRE study. Acute Infarction Ramipril Efficacy. Pharmacoeconomics 12, 256–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Schädlich, P. K., Huppertz, E. & Brecht, J. G. Cost-effectiveness analysis of ramipril in heart failure after myocardial infarction. Economic evaluation of the Acute Infarction Ramipril Efficacy (AIRE) study for Germany from the perspective of Statutory Health Insurance. Pharmacoeconomics 14, 653–669 (1998).

    Article  PubMed  Google Scholar 

  50. Maggioni, A. P. et al. Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensin-converting enzyme inhibitors. J. Am. Coll. Cardiol. 40, 1414–1421 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Bangalore, S., Kumar, S. & Messerli, F. H. Angiotensin-converting enzyme inhibitor associated cough: deceptive information from the Physicians' Desk Reference. Am. J. Med. 123, 1016–1030 (2010).

    Article  PubMed  Google Scholar 

  52. Pradelli, L., Iannazzo, S. & Zaniolo, O. The cost-effectiveness and cost utility of valsartan in chronic heart failure therapy in Italy: a probabilistic markov model. Am. J. Cardiovasc. Drugs 9, 383–392 (2009).

    Article  PubMed  Google Scholar 

  53. Bristow, M. R. et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 94, 2807–2816 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

  55. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353, 2001–2007 (1999).

  56. Dargie, H. J. for the CAPRICORN Investigators. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 357, 1385–1390 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Packer, M. et al. Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344, 1651–1658 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Flather, M. D. et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur. Heart J. 26, 215–225 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Yao, G. et al. Long-term cost-effectiveness analysis of nebivolol compared with standard care in elderly patients with heart failure: an individual patient-based simulation model. Pharmacoeconomics 26, 879–889 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Butler, J. et al. Update on aldosterone antagonists use in heart failure with reduced left ventricular ejection fraction. Heart Failure Society of America Guidelines Committee. J. Card. Fail. 18, 265–281 (2012).

    Article  CAS  PubMed  Google Scholar 

  61. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Zannad, F. et al. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med. 364, 11–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Tilson, L., McGowan, B., Ryan, M. & Barry, M. Cost-effectiveness of spironolactone in patients with severe heart failure. Ir. J. Med. Sci. 172, 70–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Weintraub, W. S. et al. Cost-effectiveness of eplerenone compared with placebo in patients with myocardial infarction complicated by left ventricular dysfunction and heart failure. Circulation 111, 1106–1113 (2005).

    Article  PubMed  Google Scholar 

  65. Szucs, T. D. et al. Cost-effectiveness of eplerenone in patients with left ventricular dysfunction after myocardial infarction—an analysis of the EPHESUS study from a Swiss perspective. Cardiovasc. Drugs Ther. 20, 193–204 (2006).

    Article  PubMed  Google Scholar 

  66. de Pouvourville, G., Solesse, A. & Beillat, M. Cost-effectiveness analysis of aldosterone blockade with eplerenone in patients with heart failure after acute myocardial infarction in the French context: the EPHESUS study. Arch. Cardiovasc. Dis. 101, 515–521 (2008).

    Article  PubMed  Google Scholar 

  67. Zhang, Z. et al. Cost-effectiveness of eplerenone in patients with heart failure after acute myocardial infarction who were taking both ACE inhibitors and beta-blockers: subanalysis of the EPHESUS. Am. J. Cardiovasc. Drugs 10, 55–63 (2010).

    Article  PubMed  Google Scholar 

  68. Chatterjee, S. et al. Eplerenone is not superior to older and less expensive aldosterone antagonists. Am. J. Med. 125, 817–825 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. McKenna, C. et al. Cost-effectiveness of aldosterone antagonists for the treatment of post-myocardial infarction heart failure. Value Health 15, 420–428 (2012).

    Article  PubMed  Google Scholar 

  71. Ward, R. E., Gheorghiade, M., Young, J. B. & Uretsky, B. Economic outcomes of withdrawal of digoxin therapy in adult patients with stable congestive heart failure. J. Am. Coll. Cardiol. 26, 93–101 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Angus, D. C. et al. Cost-effectiveness of fixed-dose combination of isosorbide dinitrate and hydralazine therapy for blacks with heart failure. Circulation 112, 3745–3753 (2005).

    Article  PubMed  Google Scholar 

  73. Rosen, V. M. et al. Cost effectiveness of intensive lipid-lowering treatment for patients with congestive-heart failure and coronary heart disease in the US. Pharmacoeconomics 28, 47–60 (2010).

    Article  PubMed  Google Scholar 

  74. Moss, A. J. et al. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. Multicenter Automatic Defibrillator Implantation Trial Investigators. N. Engl. J. Med. 335, 1933–1940 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Buxton, A. E. et al. A randomized study of the prevention of sudden death in patients with coronary artery disease. Multicenter Unsustained Tachycardia Trial Investigators. N. Engl. J. Med. 341, 1882–1890 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    CAS  PubMed  Google Scholar 

  77. Kadish, A. et al. Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 350, 2151–2158 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Moss, A. J. et al. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346, 877–883 (2002).

    Article  PubMed  Google Scholar 

  79. Mushlin, A. I. et al. The cost-effectiveness of automatic implantable cardiac defibrillators: results from MADIT. Multicenter Automatic Defibrillator Implantation Trial. Circulation 97, 2129–2135 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Sanders, G. D., Hlatky, M. A. & Owens, D. K. Cost-effectiveness of implantable cardioverter-defibrillators. N. Engl. J. Med. 353, 1471–1480 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Al-Khatib, S. M. et al. Clinical and economic implications of the Multicenter Automatic Defibrillator Implantation Trial-II. Ann. Intern. Med. 142, 593–600 (2005).

    Article  PubMed  Google Scholar 

  82. National Institute for Health and Care Excellence. Technology Appraisal 95. Implantable cardioverter defibrillators for arrhythmias: review of technology appraisal 11 [online], (2006).

  83. Gandjour, A., Holler, A., Dipl-Ges-Ök & Adarkwah, C. C. Cost-effectiveness of implantable defibrillators after myocardial infarction based on 8-year follow-up data (MADIT II). Value Health 14, 812–817 (2011).

    Article  PubMed  Google Scholar 

  84. Smith, T. et al. The cost-effectiveness of primary prophylactic implantable defibrillator therapy in patients with ischaemic or non-ischaemic heart disease: an European analysis. Eur. Heart J. 34, 211–219 (2013).

    Article  PubMed  Google Scholar 

  85. Ribeiro, R. A. et al. Cost-effectiveness of implantable cardioverter-defibrillators in Brazil: primary prevention analysis in the public sector. Value Health 13, 160–168 (2010).

    Article  PubMed  Google Scholar 

  86. Feingold, B., Arora, G., Webber, S. A. & Smith, K. J. Cost-effectiveness of implantable cardioverter-defibrillators in children with dilated cardiomyopathy. J. Card. Fail. 16, 734–741 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sanders, G. D., Kong, M. H., Al-Khatib, S. M. & Peterson, E. D. Cost-effectiveness of implantable cardioverter defibrillators in patients > or = 65 years of age. Am. Heart J. 160, 122–131 (2010).

    Article  PubMed  Google Scholar 

  88. Connolly, S. J. et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur. Heart J. 21, 2071–2078 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. O'Brien, B. J. et al. Cost-effectiveness of the implantable cardioverter-defibrillator: results from the Canadian Implantable Defibrillator Study (CIDS). Circulation 103, 1416–1421 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Larsen, G. et al. Cost-effectiveness of the implantable cardioverter-defibrillator versus antiarrhythmic drugs in survivors of serious ventricular tachyarrhythmias: results of the Antiarrhythmics Versus Implantable Defibrillators (AVID) economic analysis substudy. Circulation 105, 2049–2057 (2002).

    Article  PubMed  Google Scholar 

  91. Ezekowitz, J. A., Armstrong, P. W. & McAlister, F. A. Implantable cardioverter defibrillators in primary and secondary prevention: a systematic review of randomized, controlled trials. Ann. Intern. Med. 138, 445–452 (2003).

    Article  PubMed  Google Scholar 

  92. Bristow, M. R. et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350, 2140–2150 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  95. Tang, A. S. et al. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385–2395 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Fox, M. et al. The clinical effectiveness and cost-effectiveness of cardiac resynchronisation (biventricular pacing) for heart failure: systematic review and economic model. Health Technol. Assess. 11, iii–iv, ix–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Callejo, D., Guerra, M., Hernandez-Madrid, A. & Blasco, J. A. Economic assessment of cardiac resynchronization therapy. Rev. Esp. Cardiol. 63, 1235–1243 (2010).

    Article  PubMed  Google Scholar 

  98. Blomstrom, P. et al. Cost-effectiveness of cardiac resynchronization therapy in the Nordic region: an analysis based on the CARE-HF trial. Eur. J. Heart Fail. 10, 869–877 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Maniadakis, N. et al. Cost-effectiveness of cardiac resynchronization therapy in Greece: an analysis based on the CArdiac REsychronization in Heart Failure trial. Europace 13, 1597–1603 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Bertoldi, E. G., Rohde, L. E., Zimerman, L. I., Pimentel, M. & Polanczyk, C. A. Cost-effectiveness of cardiac resynchronization therapy in patients with heart failure: The perspective of a middle-income country's public health system. Int. J. Cardiol. 163, 309–315 (2013).

    Article  PubMed  Google Scholar 

  101. Feldman, A. M. et al. Cost-effectiveness of cardiac resynchronization therapy in the Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) trial. J. Am. Coll. Cardiol. 46, 2311–2321 (2005).

    Article  PubMed  Google Scholar 

  102. Aidelsburger, P., Grabein, K., Klauss, V. & Wasem, J. Cost-effectiveness of cardiac resynchronization therapy in combination with an implantable cardioverter defibrillator (CRT-D) for the treatment of chronic heart failure from a German health care system perspective. Clin. Res. Cardiol. 97, 89–97 (2008).

    Article  PubMed  Google Scholar 

  103. Digiorgi, P. L. et al. Heart transplant and left ventricular assist device costs. J. Heart Lung Transplant. 24, 200–204 (2005).

    Article  PubMed  Google Scholar 

  104. Evans, R. W. Cost-effectiveness analysis of transplantation. Surg. Clin. North Am. 66, 603–616 (1986).

    Article  CAS  PubMed  Google Scholar 

  105. Ouwens, J. P. et al. The cost-effectiveness of lung transplantation compared with that of heart and liver transplantation in the Netherlands. Transpl. Int. 16, 123–127 (2003).

    Article  PubMed  Google Scholar 

  106. Dayton, J. D., Kanter, K. R., Vincent, R. N. & Mahle, W. T. Cost-effectiveness of pediatric heart transplantation. J. Heart Lung Transplant. 25, 409–415 (2006).

    Article  PubMed  Google Scholar 

  107. Kirk, R. et al. The Registry of the International Society for Heart and Lung Transplantation: fourteenth pediatric heart transplantation report—2011. J. Heart Lung Transplant. 30, 1095–1103 (2011).

    Article  PubMed  Google Scholar 

  108. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Miller, L. W. et al. Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357, 885–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. John, R. et al. Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann. Thorac. Surg. 86, 1227–1234 (2008).

    Article  PubMed  Google Scholar 

  111. Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Slaughter, M. S. & Rogers, J. G. Editorial Commentary: Determining the cost-effectiveness of mechanical circulatory support. J. Heart Lung Transplant. 31, 448–449 (2012).

    Article  PubMed  Google Scholar 

  113. Hutchinson, J. et al. Cost-effectiveness of left ventricular-assist devices in end-stage heart failure. Expert Rev. Cardiovasc. Ther. 6, 175–185 (2008).

    Article  PubMed  Google Scholar 

  114. Moreno, S. G., Novielli, N. & Cooper, N. J. Cost-effectiveness of the implantable HeartMate II left ventricular assist device for patients awaiting heart transplantation. J. Heart Lung Transplant. 31, 450–458 (2012).

    Article  PubMed  Google Scholar 

  115. Clegg, A. J. et al. The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failure: a systematic review and economic evaluation. Health Technol. Assess. 9, 1–132, iii–iv (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Clegg, A. J. et al. Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for people with end-stage heart failure: a systematic review and economic evaluation. Int. J. Technol. Assess. Health Care 23, 261–268 (2007).

    Article  PubMed  Google Scholar 

  117. Brown, K. L. et al. Cost utility evaluation of extracorporeal membrane oxygenation as a bridge to transplant for children with end-stage heart failure due to dilated cardiomyopathy. J. Heart Lung Transplant. 28, 32–38 (2009).

    Article  PubMed  Google Scholar 

  118. Reed, S. D. et al. Multinational economic evaluation of valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial (Val-HeFT). Am. Heart J. 148, 122–128 (2004).

    Article  PubMed  Google Scholar 

  119. McMurray, J. J. et al. Resource utilization and costs in the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur. Heart J. 27, 1447–1458 (2006).

    Article  PubMed  Google Scholar 

  120. Colombo, G. L., Caruggi, M., Ottolini, C. & Maggioni, A. P. Candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) and resource utilization and costs in Italy. Vasc. Health Risk Manag. 4, 223–234 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Taylor, M., Scuffham, P. A., Chaplin, S. & Papo, N. L. An economic evaluation of valsartan for post-MI patients in the UK who are not suitable for treatment with ACE inhibitors. Value Health 12, 459–465 (2009).

    Article  PubMed  Google Scholar 

  122. Delea, T. E., Vera-Llonch, M., Richner, R. E., Fowler, M. B. & Oster, G. Cost effectiveness of carvedilol for heart failure. Am. J. Cardiol. 83, 890–896 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Caro, J. J. et al. Economic implications of extended-release metoprolol succinate for heart failure in the MERIT-HF trial: a US perspective of the MERIT-HF trial. J. Card. Fail. 11, 647–656 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Di Stasi, F., Scalone, L., De Portu, S., Menditto, E. & Mantovani, L. G. Cost-effectiveness analysis of bisoprolol treatment for heart failure. Ital. Heart J. 6, 950–955 (2005).

    PubMed  Google Scholar 

  125. Gutzwiller, F. S. et al. Health economic assessment of ferric carboxymaltose in patients with iron deficiency and chronic heart failure based on the FAIR-HF trial: an analysis for the UK. Eur. J. Heart Fail. 14, 782–790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caro, J. J., Ward, A., Deniz, H. B., O'Brien, J. A. & Ehreth, J. L. Cost-benefit analysis of preventing sudden cardiac deaths with an implantable cardioverter defibrillator versus amiodarone. Value Health 10, 13–22 (2007).

    Article  PubMed  Google Scholar 

  127. Neyt, M., Thiry, N., Ramaekers, D. & Van Brabandt, H. Cost effectiveness of implantable cardioverter-defibrillators for primary prevention in a Belgian context. Appl. Health Econ. Health Policy 6, 67–80 (2008).

    Article  PubMed  Google Scholar 

  128. Deniz, H. B., Ward, A., Jaime Caro, J., Alvarez, P. & Sadri, H. Cost-benefit analysis of primary prevention of sudden cardiac death with an implantable cardioverter defibrillator versus amiodarone in Canada. Curr. Med. Res. Opin. 25, 617–626 (2009).

    Article  PubMed  Google Scholar 

  129. Nichol, G., Kaul, P., Huszti, E. & Bridges, J. F. Cost-effectiveness of cardiac resynchronization therapy in patients with symptomatic heart failure. Ann. Intern. Med. 141, 343–351 (2004).

    Article  PubMed  Google Scholar 

  130. Yao, G. et al. The long-term cost-effectiveness of cardiac resynchronization therapy with or without an implantable cardioverter–defibrillator. Eur. Heart J. 28, 42–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Neyt, M. et al. Cost-effectiveness of cardiac resynchronisation therapy for patients with moderate-to-severe heart failure: a lifetime Markov model. BMJ Open 1, e000276 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Noyes, K. et al. Cost-effectiveness of cardiac resynchronization therapy in the MADIT-CRT trial. J. Cardiovasc. Electrophysiol. 24, 66–74 (2013).

    Article  PubMed  Google Scholar 

  133. Sharples, L. D. et al. Cost-effectiveness of ventricular assist device use in the United Kingdom: results from the evaluation of ventricular assist device programme in the UK (EVAD-UK). J. Heart Lung Transplant. 25, 1336–1343 (2006).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched the data for the article, substantially contributed to discussions of the content, wrote the article, and reviewed the manuscript before submission.

Corresponding author

Correspondence to Carísi A. Polanczyk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohde, L., Bertoldi, E., Goldraich, L. et al. Cost-effectiveness of heart failure therapies. Nat Rev Cardiol 10, 338–354 (2013). https://doi.org/10.1038/nrcardio.2013.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing