Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarkers in acute heart failure—state of the art

Abstract

The role of biomarkers in the management of patients with acute heart failure (HF) has evolved rapidly in the past several years. Representing a major burden on health systems, acute HF has increased the need for earlier diagnosis, better risk stratification, and cost-effective treatment to reduce rates of hospitalization. Biomarker-guided diagnosis and treatment have become essential, especially in the acute setting to which the majority of the patients with acute HF initially present. Studies clearly demonstrate the complexity of these patients, who commonly have multiple comorbidities necessitating an integrative approach. Several groundbreaking studies conducted in the past decade have demonstrated how biomarkers, individually or in combination, can outperform conventional laboratory tests used in the emergency department as well as in hospitalized patients with acute HF. In this Review, we will provide an update on biomarkers considered state of the art in the diagnosis and management of patients with acute HF.

Key Points

  • The symptoms and signs of acute de novo heart failure (HF) and acute decompensated HF have distinct underlying pathophysiology; however, they show little clinical variation on presentation

  • Presenting signs in patients with acute HF are often difficult to interpret on the basis of available laboratory tests

  • Neutrophil gelatinase-associated lipocalin (NGAL) is a sensitive marker of acute kidney injury in the early ischemic phase of acute HF

  • Procalcitonin can be used to differentiate between acute HF and superimposed pneumonia, to guide antibiotic treatment, and to predict adverse outcomes

  • Infective and inflammatory markers can provide strong evidence of multiorgan involvement in patients with acute HF, thus predicting short-term survival

  • Biomonitoring and multimarker strategies can improve patient outcomes, decrease length of hospital admission, and reduce hospitalization costs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biomarkers and their organ-specific release sites.
Figure 2: Proposed biomarker timeline.
Figure 3: A hypothetical paradigm for the treatment and hospital discharge of patients with ADHF.

Similar content being viewed by others

References

  1. Lloyd-Jones, D. et al. Heart disease and stroke statistics—2009 update. A report from the American Heart association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480–486 (2009).

    PubMed  Google Scholar 

  2. Metra, M. et al. Acute heart failure: multiple clinical profiles and mechanisms require tailored therapy. Int. J. Cardiol. 144, 175–179 (2010).

    PubMed  Google Scholar 

  3. Rudiger, A. et al. Acute heart failure: clinical presentation, one-year mortality and prognostic factors. Eur. J. Heart Fail. 7, 662–670 (2005).

    PubMed  Google Scholar 

  4. Follath, F. et al. Clinical presentation, management and outcomes in the Acute Heart Failure Global Survey of Standard Treatment (ALARM-HF). Intensive Care Med. 37, 619–626 (2011).

    CAS  PubMed  Google Scholar 

  5. Gheorighade M. et al. Pathophysiologic targets in the early phase of acute heart failure syndromes. Am. J. Cardiol. 96, 11G–17G (2005).

    Google Scholar 

  6. Latour-Perez, J., Coves-Orts, F. J., Abad-Terrado, C., Abraira, V. & Zamora, J. Accuracy of B-type natriuretic peptide levels in the diagnosis of left ventricular dysfunction and heart failure: a systematic review. Eur. J. Heart Fail. 8, 390–399 (2006).

    CAS  PubMed  Google Scholar 

  7. Adams, K. F. Jr et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am. Heart J. 149, 209–216 (2005).

    PubMed  Google Scholar 

  8. Fonarrow, G. C., Heywood, J. T., Heidenreich, P. A., Lopatin, M. & Yancy, C. W. Temporal trends in clinical characteristics, treatments, and outcomes for heart failure hospitalizations, 2002 to 2004: findings from Acute Decompensated National Registry (ADHERE). Am. Heart J. 153, 1021–1028 (2007).

    Google Scholar 

  9. De Luca, L. et al. Acute heart failure syndromes: clinical scenarios and pathophysiologic targets for therapy. Heart Fail. Rev. 12, 97–104 (2007).

    PubMed  Google Scholar 

  10. Weintraub, N. L. et al. Acute heart failure syndromes: emergency department presentation, treatment, and disposition: current approaches and future aims: a scientific statement from the American Heart Association. Circulation 122, 1975–1996 (2010).

    PubMed  Google Scholar 

  11. Cotter, G., Felker, G. M., Adams, K. F., Milo-Cotter, O. & O'Connor, C. M. The pathophysiology of acute heart failure—is it all about fluid accumulation? Am. Heart J. 155, 9–18 (2008).

    PubMed  Google Scholar 

  12. Collins, S. P., Lindsell, C. J., Storrow, A. B. & Abraham, W. T. for the HERE Scientific Advisory Committee, Investigators and Study Group. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann. Emerg. Med. 47, 13–18 (2006).

    PubMed  Google Scholar 

  13. Parekh, N. & Maisel, A. S. Utility of B-natriuretic peptide in the evaluation of left ventricular diastolic function and diastolic heart failure. Curr. Opin. Cardiol. 24, 155–160 (2009).

    PubMed  Google Scholar 

  14. Atkinson, A. J. et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

    Google Scholar 

  15. Hlatky, M. A. et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation 119, 2408–2416 (2009).

    PubMed Central  PubMed  Google Scholar 

  16. Pandit, K., Mukhopadhyay, P., Ghosh, S. & Chowdhury, S. Natriuretic peptides: diagnostic and therapeutic use. Indian J. Endocrinol. Metab. 15 (Suppl. 4), S345–S353 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen, H. & Burnett, J. C. Jr. Clinical application of the natriuretic peptides in heart failure. Eur. Heart J. 8 (Suppl. E), E18–E25 (2006).

    CAS  Google Scholar 

  18. Collins, S. P., Ronan-Bentle, S. & Storrow, A. B. Diagnostic and prognostic usefulness of natriuretic peptides in emergency department patients with dyspnea. Ann. Emerg. Med. 41, 532–545 (2003).

    PubMed  Google Scholar 

  19. Clerico, A., Recchia, F. A., Passino, C. & Emdin, M. Cardiac endocrine function is an essential component of the homeostatic regulation network: physiological and clinical implications. Am. J. Physiol. Heart Circ. Physiol. 290, H17–H29 (2006).

    CAS  PubMed  Google Scholar 

  20. Sagnella, G. A. Measurement and significance of circulating natriuretic peptides in cardiovascular disease. Clin. Sci. (Lond.) 95, 519–529 (1998).

    CAS  Google Scholar 

  21. Misono, K. S. et al. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J. 278, 1818–1829 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Maisel, A. S. et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N. Engl. J. Med. 347, 161–167 (2002).

    CAS  PubMed  Google Scholar 

  23. Maisel, A. S. et al. Impact of age, race, and sex on the ability of B-type natriuretic peptide to aid in the emergency diagnosis of heart failure: results from the Breathing Not Properly (BNP) multinational study. Am. Heart J. 147, 1078–1084 (2004).

    CAS  PubMed  Google Scholar 

  24. Maisel, A. S. et al. Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction: results from the Breathing Not Properly multinational study. J. Am. Coll. Cardiol. 41, 2010–2017 (2003).

    PubMed  Google Scholar 

  25. Lukowicz, T. V. et al. BNP as a marker of diastolic dysfunction in the general population: importance of left ventricular hypertrophy. Eur. J. Heart Fail. 7, 525–531 (2005).

    CAS  PubMed  Google Scholar 

  26. Richards, A. M. et al. Neuroendocrine prediction of left ventricular function and heart failure after myocardial infarction. The Christchurch Cardioendocrine Research Group. Heart 81, 114–120 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Shah, K. B. et al. Natriuretic peptides and echocardiography in acute dyspnea: implication of elevated levels with normal systolic function. Eur. J. Heart Fail. 11, 659–667 (2009).

    CAS  PubMed  Google Scholar 

  28. Lubien, E. et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction: comparison with Doppler velocity recordings. Circulation 105, 595–601 (2002).

    CAS  PubMed  Google Scholar 

  29. Bhalla, V., Scott, W. & Maisel, A. S. B-type natriuretic peptide: the level and the drug—partners in the diagnosis and management of congestive heart failure. Congest. Heart Fail. 10 (1 Suppl. 1), 3–27 (2004).

    CAS  PubMed  Google Scholar 

  30. O'Connor, C. M. et al. Causes of death and rehospitalization in patients hospitalized with worsening heart failure and reduced left ventricular ejection fraction: results from efficacy of vasopressin antagonism in heart failure outcome study with tolvaptan (EVEREST) program. Am. Heart J. 159, 841–849 (2010).

    CAS  PubMed  Google Scholar 

  31. Pimenta, J. et al. BNP at discharge in acute heart failure patients: is it all about volemia? A study using impedance cardiography to assess fluid and hemodynamic status. Int. J. Cardiol. 145, 209–214 (2010).

    PubMed  Google Scholar 

  32. Valle, R. et al. Optimizing fluid management in patients with acute decompensated heart failure (ADHF): the emerging role of combined measurement of body hydration status and brain natriuretic peptide (BNP) levels. Heart Fail. Rev. 16, 519–529 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Parrinello, G. et al. The usefulness of bioelectric impedance analysis in differentiating dyspnea due to decompensated heart failure. J. Cardiac Fail. 14, 676–686 (2008).

    Google Scholar 

  34. Maisel, A. S. et al. Primary results of the Rapid Emergency Department Heart Failure Outpatient Trial (REDHOT). A multicenter study of B-type natriuretic peptide levels, emergency department decision making, and outcomes in patients presenting with shortness of breath. J. Am. Coll. Cardiol. 44, 1328–1333 (2004).

    PubMed  Google Scholar 

  35. DiSomma, S. et al. Use of BNP and bioimpedance to drive therapy in heart failure patients. Congest. Heart Fail. 16, 56–61 (2010).

    Google Scholar 

  36. Norman, K. et al. Bioimpedance vector analysis as a measure of muscle function. Clin. Nutr. 28, 78–82 (2009).

    PubMed  Google Scholar 

  37. Piccoli, A., Pillon, L. & Dumler, F. Impedance vector distribution by sex, body mass index, and age in the United States: standard reference intervals as bivariate Z scores. Nutrition 18, 153–167 (2002).

    PubMed  Google Scholar 

  38. McCullough, P. A., Omland, T. & Maisel, A. S. B-type natriuretic peptides: a diagnostic breakthrough for clinicians. Rev. Cardiovasc. Med. 4, 72–80 (2003).

    PubMed  Google Scholar 

  39. Mueller, T., Gegenhuber, A., Poelz, W. & Haltmayer, M. Diagnostic accuracy of B-type natriuretic peptide and amino terminal proBNP in the emergency diagnosis of heart failure. Heart 91, 606–612 (2005).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Januzzi, J. L. et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur. Heart J. 27, 330–337 (2006).

    CAS  PubMed  Google Scholar 

  41. Gegenhuber, A. et al. B-type natriuretic peptide and amino terminal proBNP predict one-year mortality in short of breath patients independently of the baseline diagnosis of acute destabilized heart failure. Clinica Chimica Acta 370, 174–179 (2006).

    CAS  Google Scholar 

  42. Chen, A. A. et al. NT-proBNP levels, echocardiographic findings, and outcomes in breathless patients: results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) echocardiographic substudy. Eur. Heart J. 27, 839–845 (2006).

    CAS  PubMed  Google Scholar 

  43. Moertl, D. et al. Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure: influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. J. Am. Coll. Cardiol. 53, 1783–1790 (2009).

    CAS  PubMed  Google Scholar 

  44. Morgenthaler, N. G., Struck, J., Thomas, B. & Bergmann, A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin. Chem. 50, 234–236 (2004).

    CAS  PubMed  Google Scholar 

  45. Maisel, A. S. et al. Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J. Am. Coll. Cardiol. 55, 2062–2076 (2010).

    CAS  PubMed  Google Scholar 

  46. Liangos, O. et al. Epidemiology and outcomes of acute renal failure in hospitalized patients: a national survey. Clin. J. Am. Soc. Nephrol. 1, 43–51 (2006).

    PubMed  Google Scholar 

  47. Damman, K. et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J. Card. Fail. 13, 599–608 (2007).

    PubMed  Google Scholar 

  48. Smith, G. L. et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J. Am. Coll. Cardiol. 47, 1987–1996 (2006).

    PubMed  Google Scholar 

  49. Chertow, G. M., Burdick, E., Honor, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16, 3365–3370 (2005).

    PubMed  Google Scholar 

  50. Soni, S., Ronco, C., Katz, N. & Cruz, D. N. Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif. 28, 165–174 (2009).

    CAS  PubMed  Google Scholar 

  51. Sarraf, M., Masoumi, A. & Schrier, R. W. Cardiorenal syndrome in acute decompensated heart failure. Clin. J. Am. Soc. Nephrol. 4, 2013–2026 (2009).

    CAS  PubMed  Google Scholar 

  52. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    PubMed  Google Scholar 

  53. Atlas, S. A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 13, 9–20 (2007).

    PubMed  Google Scholar 

  54. Ronco, C. & Cruz, D. N. Biomarkers in cardio-renal syndromes. Ligand Assay 14, 340–349 (2009).

    Google Scholar 

  55. Mishra, J. et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J. Am. Soc. Nephrol. 14, 2534–2543 (2003).

    CAS  PubMed  Google Scholar 

  56. Mishra, J. et al. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J. Am. Soc. Nephrol. 15, 3073–3082 (2004).

    PubMed  Google Scholar 

  57. Mori, K. & Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int. 71, 967–970 (2007).

    CAS  PubMed  Google Scholar 

  58. Nickolas, T. L., Barasch, J. & Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 17, 127–132 (2008).

    CAS  PubMed  Google Scholar 

  59. Soni, S. S. et al. NGAL: a biomarker of acute kidney injury and other systematic conditions. Int. Urol. Nephrol. 42, 141–150 (2010).

    CAS  PubMed  Google Scholar 

  60. Aghel, A., Shrestha, K., Mullens, W., Borowski, A. & Tang, W. H. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J. Cardiac Fail. 16, 49–54 (2010).

    CAS  Google Scholar 

  61. Maisel, A. S. et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL Evaluation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur. J. Heart Fail. 13, 846–851 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Hasse, M. et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J. Am. Coll. Cardiol. 57, 1752–1761 (2011).

    Google Scholar 

  63. Ichimura, T. et al. Kidney injury molecule 1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol. 286, F552–F563 (2004).

    CAS  PubMed  Google Scholar 

  64. Trof, R. J., Di Maggio, F., Leemreis, J. & Groeneveld, A. B. Biomarkers of acute renal injury and renal failure. Shock 26, 245–253 (2006).

    CAS  PubMed  Google Scholar 

  65. Krawczeski, C. D. et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J. Am. Coll. Cardiol. 58, 2301–2309 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Przybylowski, P., Malyszko, J., Kozlowska, S. & Malyszko, J. S. Kidney injury molecule 1 correlates with kidney function in heart allograft recipients. Transplant. Proc. 43, 3061–3063 (2011).

    CAS  PubMed  Google Scholar 

  67. Endre, Z. H. et al. Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int. 79, 1119–1130 (2011).

    CAS  PubMed  Google Scholar 

  68. Nickolas, T. L. et al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59, 246–255 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Fonarow, G. C. et al. Factors identified as precipitated hospital admissions for heart failure and clinical outcomes: findings from OPTIMIZE-HF. Arch. Intern. Med. 168, 847–854 (2008).

    PubMed  Google Scholar 

  70. Meisner, M., Adina, H. & Scmidt, J. Correlation of procalcitonin and C-reactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients. Crit. Care 10, R1 (2006).

    PubMed  Google Scholar 

  71. Nijsten, M. et al. Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Crit. Care Med. 28, 458–461 (2000).

    CAS  PubMed  Google Scholar 

  72. Hausfater, P. et al. Serum procalcitonin measurement as diagnostic and prognostic marker in febrile adult patients presenting to the emergency department. Crit. Care 11, R60 (2006).

    Google Scholar 

  73. Delèvaux, I. et al. Can procalcitonin measurement help in differentiating between bacterial infection and other kinds of inflammatory processes? Ann. Rheum. Dis. 62, 337–340 (2003).

    PubMed Central  PubMed  Google Scholar 

  74. Christ-Crain, M. et al. Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am. J. Respir. Crit. Care Med. 174, 84–93 (2006).

    CAS  PubMed  Google Scholar 

  75. Picariello, C., Lazzeri, C., Valente, S., Chiostri, M. & Gensini, G. F. Procalcitonin in acute cardiac patients. Intern. Emerg. Med. 6, 245–252 (2011).

    PubMed  Google Scholar 

  76. Kafkas, N. et al. Procalcitonin in acute myocardial infarction. Acute Card. Care. 10, 30–36 (2008).

    PubMed  Google Scholar 

  77. Linscheid, P. et al. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Crit. Care Med. 32, 1715–1721 (2004).

    CAS  PubMed  Google Scholar 

  78. Delerme, S., Chenevier-Gobeaux, C., Doumenc, B. & Ray, P. Usefulness of B natriuretic peptides and procalcitonin in emergency medicine. Biomark. Insights 3, 203–217 (2008).

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hausfater, P. et al. Usefulness of procalcitonin as a marker of systemic infection in emergency department patients: a prospective study. Clin. Infect. Dis. 34, 895–901 (2002).

    CAS  PubMed  Google Scholar 

  80. Picariello, C. et al. Kinetics of procalcitonin in cardiogenic shock and in septic shock. Preliminary data. Acute Card. Care 12, 96–101 (2010).

    PubMed  Google Scholar 

  81. Sinning, C. R. et al. Association of serum procalcitonin with cardiovascular prognosis in coronary artery disease. Circ. J. 75, 1184–1191 (2011).

    PubMed  Google Scholar 

  82. Maisel, A. S. et al. Use of procalcitonin for the diagnosis of pneumonia in patients presenting with a chief complaint of dyspnoea: results from the BACH (Biomarkers in Acute Heart Failure) trial. Eur. J. Heart Fail. 14, 278–286 (2012).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Doyle, I. R., Nicholas, T. E. & Bersten, A. D. Serum surfactant protein A levels in patients with cardiogenic pulmonary edema and adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 152, 307–317 (1995).

    CAS  PubMed  Google Scholar 

  84. Doyle, I. R., Bersten, A. D. & Nicholas, T. E. Surfactant proteins A and B are elevated in plasma of patients with acute respiratory failure. Am. J. Respir. Crit. Care Med. 156, 1217–1229 (1997).

    CAS  PubMed  Google Scholar 

  85. Bersten, A. D., Hunt, T., Nicholas, T. E. & Doyle, I. R. Elevated plasma surfactant protein B predicts development of acute respiratory distress syndrome in patients with acute respiratory failure. Am. J. Respir. Crit. Care Med. 164, 648–652 (2001).

    CAS  PubMed  Google Scholar 

  86. Cheng, I. W. et al. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit. Care Med. 31, 20–27 (2003).

    CAS  PubMed  Google Scholar 

  87. De Pasquale, C. G. et al. Circulating surfactant protein B levels increase acutely in response to exercise-induced left ventricular dysfunction. Clin. Exp. Pharmacol. Physiol. 32, 622–627 (2005).

    CAS  PubMed  Google Scholar 

  88. Bloomfield, S. M., McKinney, J., Smith, L. & Brisman, J. Reliability of S100B in predicting severity of central nervous system injury. Neurocrit. Care 6, 121–138 (2007).

    CAS  PubMed  Google Scholar 

  89. Van Eldik, L. J. & Zimmer, B. D. Secretion of S-100 from rat C6 glioma cells. Brain Res. 436, 367–370 (1987).

    CAS  PubMed  Google Scholar 

  90. Rainey, T., Lesko, M., Sacho, R., Lecky, F. & Childs, C. Predicting outcome after severe traumatic brain injury using the serum S100B biomarker: results using a single (24h) time-point. Resuscitation 80, 341–345 (2009).

    CAS  PubMed  Google Scholar 

  91. Wiesmann, M. et al. Outcome prediction in traumatic brain injury: comparison of neurological status, CT findings, and blood levels of S100B and GFAP. Acta Neurol. Scand. 121, 178–185 (2010).

    CAS  PubMed  Google Scholar 

  92. Böhmer, A. E. et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 68, 1624–1630 (2011).

    PubMed  Google Scholar 

  93. Ngyuen, D. N. et al. Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit. Care Med. 34, 1967–1974 (2006).

    Google Scholar 

  94. Snyder-Ramos, S. A. et al. Cerebral and extracerebral release of protein S100B in cardiac surgical patients. Anesthesia 59, 344–349 (2004).

    CAS  Google Scholar 

  95. Tsoporis, J. N. et al. S100B interaction with the receptor for advanced glycation end products (RAGE): a novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circ. Res. 106, 93–101 (2010).

    CAS  PubMed  Google Scholar 

  96. Yan, S. F., Ramasamy, R. & Schmidt, A. M. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev. Mol. Med. 11, e9 (2009).

    PubMed Central  PubMed  Google Scholar 

  97. Li, J. P., Lu, L., Wang, L. J., Zhang, F. R. & Shen, W. F. Increased serum levels of S100B are related to the severity of cardiac dysfunction, renal insufficiency and major cardiac events in patients with chronic heart failure. Clin. Biochem. 44, 984–988 (2011).

    CAS  PubMed  Google Scholar 

  98. Morgenthaler, N. G., Struck, J., Alonso, C. & Bergman, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 52, 112–119 (2006).

    CAS  PubMed  Google Scholar 

  99. Stoiser B. et al. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Invest. 36, 771–778 (2006).

    CAS  PubMed  Google Scholar 

  100. Neuhold, S. et al. Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure. J. Am. Coll. Cardiol. 52, 266–272 (2008).

    CAS  PubMed  Google Scholar 

  101. Voors, A. et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from OPTIMAAL study. Eur. Heart J. 30, 1187–1194 (2009).

    CAS  PubMed  Google Scholar 

  102. Kelly, D. et al. C-terminal provasopressin (copeptin) is associated with left ventricular dysfunction, remodelling, and clinical heart failure in survivors of myocardial infarction. J. Cardiac Fail. 14, 739–745 (2008).

    CAS  Google Scholar 

  103. Peacock, W. F. et al. Short-term mortality risk in emergency department acute heart failure. Acad. Emerg. Med. 18, 947–958 (2011).

    PubMed  Google Scholar 

  104. Jougasaki, M. et al. Adrenomedullin in experimental congestive heart failure: cardiorenal activation. Am. J. Physiol. 273 (4 Pt 2), R1392–R1399 (1997).

    CAS  PubMed  Google Scholar 

  105. Hirayama, N. et al. Molecular forms of circulating adrenomedullin in patients with congestive heart failure. J. Endocrinol. 160, 297–303 (1999).

    CAS  PubMed  Google Scholar 

  106. Daggubati, S. et al. Adrenomedullin, endothelin, neuropeptide Y, atrial, brain, and C-natriuretic prohormone peptides compared as early heart failure indicators. Cardiovasc. Res. 36, 246–255 (1997).

    CAS  PubMed  Google Scholar 

  107. Jougasaki, M., Grantham, J. A., Redfield, M. M. & Burnett, J. C. Jr. Regulation of cardiac adrenomedullin in heart failure. Peptides 22, 1841–1850 (2001).

    CAS  PubMed  Google Scholar 

  108. von Haehling, S. et al. Mid-regional pro-adrenomedullin as a novel predictor of mortality in patients with chronic heart failure. Eur. J. Heart Fail. 12, 484–491 (2010).

    PubMed  Google Scholar 

  109. Klip, I. T. et al. Prognostic value of mid-regional pro-adrenomedullin in patients with heart failure after an acute myocardial infarction. Heart 97, 892–898 (2011).

    CAS  PubMed  Google Scholar 

  110. Weinberg, E. O. et al. Expression and regulation of ST2, an interleukin 1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106, 2961–2966 (2002).

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Shimpo, M. et al. Serum levels of the interleukin 1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 109, 2186–2190 (2004).

    CAS  PubMed  Google Scholar 

  112. Sanada, S. et al. IL 33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549 (2007).

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Mueller, T. et al. Increased plasma concentrations of soluble ST2 are predictive for 1 year mortality in patients with acute destabilized heart failure. Clin. Chem. 54, 752–756 (2008).

    CAS  PubMed  Google Scholar 

  114. Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R. & Januzzi, J. L. Serum levels of the interleukin 1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ. Heart Fail. 2, 311–319 (2009).

    CAS  PubMed  Google Scholar 

  115. Januzzi, J. L. Jr. et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 50, 607–613 (2007).

    CAS  PubMed  Google Scholar 

  116. Sharma, U. C. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110, 3121–3128 (2004).

    CAS  PubMed  Google Scholar 

  117. de Boer, R. A., Voors, A. A., Muntendam, P., van Gilst, W. H. & van Veldhuisen, D. J. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 11, 811–817 (2009).

    CAS  PubMed  Google Scholar 

  118. van Kimmenade, R. R. et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J. Am. Coll. Cardiol. 48, 1217–1224 (2006).

    CAS  PubMed  Google Scholar 

  119. Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R. & Januzzi, J. L. Galectin-3, cardiac structure and function, and long-term mortality in patients with acutely decompensated heart failure. Eur. J. Heart Fail. 12, 826–832 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Morrow, D. A. et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines: clinical characteristics and utilization of biochemical markers in acute coronary syndromes. Clin. Chem. 53, 552–574 (2007).

    CAS  PubMed  Google Scholar 

  121. Higgins, J. P. & Higgins, J. A. Elevation of cardiac troponin I indicates more than myocardial ischemia. Clin. Invest. Med. 26, 133–147 (2003).

    CAS  PubMed  Google Scholar 

  122. Gerhardt, W., Nordin, G. & Ljungdahl, L. Can troponin T replace CK MBmass as “gold standard” for acute myocardial infarction (“AMI”)? Scand. J. Clin. Lab. Invest. Suppl. 230, 83–89 (1999).

    CAS  PubMed  Google Scholar 

  123. Weber, M. et al. Improved diagnostic and prognostic performance of a new high-sensitive troponin T assay in patients with acute coronary syndrome. Am. Heart J. 162, 81–88 (2011).

    CAS  PubMed  Google Scholar 

  124. Dinh, W. et al. High sensitive troponin T and heart fatty acid binding protein: novel biomarker in heart failure with normal ejection fraction? A cross-sectional study. BMC Cardiovasc. Disord. 11, 41 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Panteghini, M. et al. Evaluation of imprecision for cardiac troponin assays at low-range concentrations. Clin. Chem. 50, 327–332 (2004).

    CAS  PubMed  Google Scholar 

  126. Thygesen, K. et al. Recommendations for the use of cardiac troponin measurement in acute cardiac care. Eur. Heart. J. 31, 2197–2204 (2010).

    CAS  PubMed  Google Scholar 

  127. Reichlin, T. et al. Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N. Engl. J. Med. 361, 858–867 (2009).

    CAS  PubMed  Google Scholar 

  128. Peacock, F. W. 4th. et al. Cardiac troponin and outcome in heart failure. N. Engl. J. Med. 358, 2117–2126 (2008).

    CAS  PubMed  Google Scholar 

  129. Xue, Y., Clopton, P., Peacock, W. F. & Maisel, A. S. Serial changes in high-sensitive troponin I predict outcome in patients with decompensated heart failure. Eur. J. Heart Fail. 1, 37–42 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Choudhary researched data for the article. Both authors contributed to the discussion of the content and wrote the article. A. S. Maisel reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Alan S. Maisel.

Ethics declarations

Competing interests

A. S. Maisel has acted as a consultant for Alere, Critical Diagnostics, and EFG Diagnostics; has received honoraria from Alere; and has received grants/research support from Abbott Laboratories, Alere, Nanosphere, Novartis, and Thermo Scientific B·R·A·H·M·S. R. Choudhary declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisel, A., Choudhary, R. Biomarkers in acute heart failure—state of the art. Nat Rev Cardiol 9, 478–490 (2012). https://doi.org/10.1038/nrcardio.2012.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2012.60

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research