Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The immune contexture in human tumours: impact on clinical outcome

Abstract

Tumours grow within an intricate network of epithelial cells, vascular and lymphatic vessels, cytokines and chemokines, and infiltrating immune cells. Different types of infiltrating immune cells have different effects on tumour progression, which can vary according to cancer type. In this Opinion article we discuss how the context-specific nature of infiltrating immune cells can affect the prognosis of patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The immune contexture.
Figure 2: The association of immune cell infiltrates with prognosis in various types of cancer.
Figure 3: Cells and chemokines that coordinate the tumour microenvironment.

References

  1. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    CAS  PubMed  Google Scholar 

  2. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    CAS  PubMed  Google Scholar 

  3. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  4. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  5. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  6. Mlecnik, B. et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J. Clin. Oncol. 29, 610–618 (2011).

    PubMed  Google Scholar 

  7. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  8. Galon, J., Fridman, W. H. & Pages, F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res. 67, 1883–1886 (2007).

    CAS  PubMed  Google Scholar 

  9. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mlecnik, B. et al. Biomolecular network reconstruction identifies T-cell homing factors associated with survival in colorectal cancer. Gastroenterology 138, 1429–1440 (2010).

    CAS  PubMed  Google Scholar 

  12. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  13. Dieu-Nosjean, M. C. et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J. Clin. Oncol. 26, 4410–4417 (2008).

    CAS  PubMed  Google Scholar 

  14. Halama, N. et al. Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011).

    CAS  PubMed  Google Scholar 

  15. Nakano, O. et al. Proliferative activity of intratumoral CD8+ T-lymphocytes as a prognostic factor in human renal cell carcinoma: clinicopathologic demonstration of antitumor immunity. Cancer Res. 61, 5132–5136 (2001).

    CAS  PubMed  Google Scholar 

  16. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  17. Bates, G. J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).

    PubMed  Google Scholar 

  18. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).

    CAS  PubMed  Google Scholar 

  19. Fu, J. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328–2339 (2007).

    PubMed  Google Scholar 

  20. Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25, 2586–2593 (2007).

    PubMed  Google Scholar 

  21. Grabenbauer, G. G., Lahmer, G., Distel, L. & Niedobitek, G. Tumor-infiltrating cytotoxic T cells but not regulatory T cells predict outcome in anal squamous cell carcinoma. Clin. Cancer Res. 12, 3355–3360 (2006).

    CAS  PubMed  Google Scholar 

  22. Heimberger, A. B. et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin. Cancer Res. 14, 5166–5172 (2008).

    CAS  PubMed  Google Scholar 

  23. Hillen, F. et al. Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma. Cancer Immunol. Immunother. 57, 97–106 (2008).

    PubMed  Google Scholar 

  24. Jacobs, J. F. et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J. Neuroimmunol 225, 195–199 (2010).

    CAS  PubMed  Google Scholar 

  25. Ladanyi, A. et al. FOXP3+ cell density in primary tumor has no prognostic impact in patients with cutaneous malignant melanoma. Pathol. Oncol. Res. 16, 303–309 (2010).

    PubMed  Google Scholar 

  26. Mahmoud, S. M. et al. An evaluation of the clinical significance of FOXP3+ infiltrating cells in human breast cancer. Breast Cancer Res. Treat. 127, 99–108 (2011).

    CAS  PubMed  Google Scholar 

  27. Mizukami, Y. et al. Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br. J. Cancer 98, 148–153 (2008).

    CAS  PubMed  Google Scholar 

  28. Sinicrope, F. A. et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137, 1270–1279 (2009).

    CAS  PubMed  Google Scholar 

  29. Zhang, Y. L. et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol. Cancer 9, 4 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. Badoual, C. et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin. Cancer Res. 12, 465–472 (2006).

    CAS  PubMed  Google Scholar 

  31. Carreras, J. et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108, 2957–2964 (2006).

    CAS  PubMed  Google Scholar 

  32. Frey, D. M. et al. High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int. J. Cancer 126, 2635–2643 (2010).

    CAS  PubMed  Google Scholar 

  33. Leffers, N. et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol. Immunother. 58, 449–459 (2009).

    PubMed  Google Scholar 

  34. Michel, S. et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br. J. Cancer 99, 1867–1873 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Salama, P. et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27, 186–192 (2009).

    PubMed  Google Scholar 

  36. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    CAS  PubMed  Google Scholar 

  37. Tzankov, A. et al. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin's lymphoma. Haematologica 93, 193–200 (2008).

    CAS  PubMed  Google Scholar 

  38. Winerdal, M. E. et al. FOXP3 and survival in urinary bladder cancer. BJU Int. 108, 1672–1678 (2011).

    CAS  PubMed  Google Scholar 

  39. Benchetrit, F. et al. Interleukin-17 inhibits tumor cell growth by means of a T-cell-dependent mechanism. Blood 99, 2114–2121 (2002).

    CAS  PubMed  Google Scholar 

  40. Tartour, E. et al. Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res. 59, 3698–3704 (1999).

    CAS  PubMed  Google Scholar 

  41. Wilke, C. M. et al. Th17 cells in cancer: help or hindrance? Carcinogenesis 32, 643–649 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoon, N. K. et al. Higher levels of GATA3 predict better survival in women with breast cancer. Hum. Pathol. 41, 1794–1801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schreck, S. et al. Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. Hematol. Oncol. 27, 31–39 (2009).

    CAS  PubMed  Google Scholar 

  44. Coca, S. et al. The prognostic significance of intratumoral natural killer cells in patients with colorectal carcinoma. Cancer 79, 2320–2328 (1997).

    CAS  PubMed  Google Scholar 

  45. Ishigami, S. et al. Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88, 577–583 (2000).

    CAS  PubMed  Google Scholar 

  46. Villegas, F. R. et al. Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35, 23–28 (2002).

    PubMed  Google Scholar 

  47. Donskov, F. & von der Maase, H. Impact of immune parameters on long-term survival in metastatic renal cell carcinoma. J. Clin. Oncol. 24, 1997–2005 (2006).

    PubMed  Google Scholar 

  48. Zhu, L. Y., Zhou, J., Liu, Y. Z. & Pan, W. D. Prognostic significance of natural killer cell infiltration in hepatocellular carcinoma. Ai Zheng 28, 1198–1202 (2009).

    PubMed  Google Scholar 

  49. Platonova, S. et al. Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71, 5412–5422 (2011).

    CAS  PubMed  Google Scholar 

  50. Mamessier, E. et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121, 3609–3622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Iglesias, T. et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer 9, 186 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Carlsten, M. et al. Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells. J. Immunol. 183, 4921–4930 (2009).

    CAS  PubMed  Google Scholar 

  53. Katou, F. et al. Differing phenotypes between intraepithelial and stromal lymphocytes in early-stage tongue cancer. Cancer Res. 67, 11195–11201 (2007).

    CAS  PubMed  Google Scholar 

  54. Schleypen, J. S. et al. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int. J. Cancer 106, 905–912 (2003).

    CAS  PubMed  Google Scholar 

  55. Wong, S. C. et al. Macrophage polarization to a unique phenotype driven by B cells. Eur. J. Immunol. 40, 2296–2307 (2010).

    CAS  PubMed  Google Scholar 

  56. Andreu, P. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mantovani, A. B cells and macrophages in cancer: yin and yang. Nature Med. 17, 285–286 (2011).

    CAS  PubMed  Google Scholar 

  58. Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4 T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Coronella-Wood, J. A. & Hersh, E. M. Naturally occurring B-cell responses to breast cancer. Cancer Immunol. Immunother. 52, 715–738 (2003).

    PubMed  Google Scholar 

  60. Coronella, J. A. et al. Evidence for an antigen-driven humoral immune response in medullary ductal breast cancer. Cancer Res. 61, 7889–7899 (2001).

    CAS  PubMed  Google Scholar 

  61. Milne, K. et al. Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS ONE 4, e6412 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. DiLillo, D. J., Yanaba, K. & Tedder, T. F. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J. Immunol. 184, 4006–4016 (2010).

    CAS  PubMed  Google Scholar 

  63. Pages, F. et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J. Clin. Oncol. 27, 5944–5951 (2009).

    CAS  PubMed  Google Scholar 

  64. Desmedt, C. et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin. Cancer Res. 14, 5158–5165 (2008).

    CAS  PubMed  Google Scholar 

  65. Iwamoto, T. et al. Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J. Natl Cancer Inst. 103, 264–272 (2011).

    CAS  PubMed  Google Scholar 

  66. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N. Engl. J. Med. 360, 790–800 (2009).

    CAS  PubMed  Google Scholar 

  67. Andre, F., Berrada, N. & Desmedt, C. Implication of tumor microenvironment in the resistance to chemotherapy in breast cancer patients. Curr. Opin. Oncol. 22, 547–551 (2010).

    CAS  PubMed  Google Scholar 

  68. Denkert, C. et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 28, 105–113 (2010).

    CAS  PubMed  Google Scholar 

  69. Gajewski, T. F., Louahed, J. & Brichard, V. G. Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer J. 16, 399–403 (2010).

    CAS  PubMed  Google Scholar 

  70. Altenburg, A., Baldus, S. E., Smola, H., Pfister, H. & Hess, S. CD40 ligand-CD40 interaction induces chemokines in cervical carcinoma cells in synergism with IFN-γ. J. Immunol. 162, 4140–4147 (1999).

    CAS  PubMed  Google Scholar 

  71. Kondo, T. et al. Favorable prognosis of renal cell carcinoma with increased expression of chemokines associated with a Th1-type immune response. Cancer Sci. 97, 780–786 (2006).

    CAS  PubMed  Google Scholar 

  72. Hirano, S. et al. Increased mRNA expression of chemokines in hepatocellular carcinoma with tumor-infiltrating lymphocytes. J. Gastroenterol. Hepatol 22, 690–696 (2007).

    CAS  PubMed  Google Scholar 

  73. Chew, V. et al. Chemokine-driven lymphocyte infiltration: an early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut 61, 427–438 (2011).

    PubMed  Google Scholar 

  74. Kunz, M. et al. Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J. Pathol. 189, 552–558 (1999).

    CAS  PubMed  Google Scholar 

  75. Martinet, L. et al. Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. 71, 5678–5687 (2011).

    CAS  PubMed  Google Scholar 

  76. de Chaisemartin, L. et al. Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res. 71, 6391–6399 (2011).

    CAS  PubMed  Google Scholar 

  77. Mlecnik, B., Bindea, G., Pages, F. & Galon, J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev. 30, 5–12 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sautes-Fridman, C. et al. Tumor microenvironment is multifaceted. Cancer Metastasis Rev. 30, 13–25 (2011).

    PubMed  Google Scholar 

  79. Camus, M. et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 69, 2685–2693 (2009).

    CAS  PubMed  Google Scholar 

  80. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  81. Adotevi, O. et al. A decrease of regulatory T cells correlates with overall survival after sunitinib-based antiangiogenic therapy in metastatic renal cancer patients. J. Immunother. 33, 991–998 (2010).

    CAS  PubMed  Google Scholar 

  82. Hood, L., Heath, J. R., Phelps, M. E. & Lin, B. Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643 (2004).

    CAS  PubMed  Google Scholar 

  83. Broussard, E. K. & Disis, M. L. TNM staging in colorectal cancer: T is for T cell and M is for memory. J. Clin. Oncol. 29, 601–603 (2011).

    PubMed  Google Scholar 

  84. Ogino, S., Galon, J., Fuchs, C. S. & Dranoff, G. Cancer immunology-analysis of host and tumor factors for personalized medicine. Nature Rev. Clin. Oncol. 8, 711–719 (2011).

    CAS  Google Scholar 

  85. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kline, J. & Gajewski, T. F. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr. Opin. Investig Drugs 11, 1354–1359 (2011).

    Google Scholar 

  87. Rosenblatt, J. et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J. Immunother. 34, 409–418 (2010).

    Google Scholar 

  88. Waldmann, T. A. Effective cancer therapy through immunomodulation. Annu. Rev. Med. 57, 65–81 (2006).

    CAS  PubMed  Google Scholar 

  89. Nardin, A. et al. Dacarbazine promotes stromal remodeling and lymphocyte infiltration in cutaneous melanoma lesions. J. Invest. Dermatol. 131, 1896–1905 (2011).

    CAS  PubMed  Google Scholar 

  90. Zitvogel, L., Apetoh, L., Ghiringhelli, F. & Kroemer, G. Immunological aspects of cancer chemotherapy. Nature Rev. Immunol. 8, 59–73 (2008).

    CAS  Google Scholar 

  91. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    CAS  PubMed  Google Scholar 

  92. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Teng, M. W. et al. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res. 70, 7800–7809 (2010).

    CAS  PubMed  Google Scholar 

  94. Stagg, J. et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc. Natl Acad. Sci. USA 108, 7142–7147 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Finn, O. J. Cancer immunology. N. Engl. J. Med. 358, 2704–2715 (2008).

    CAS  PubMed  Google Scholar 

  96. Phan, G. Q. et al. Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J. Immunother. 26, 349–356 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Beer, T. M. et al. Randomized trial of autologous cellular immunotherapy with sipuleucel-T in androgen-dependent prostate cancer. Clin. Cancer Res. 17, 4558–4567 (2011).

    CAS  PubMed  Google Scholar 

  99. Kantoff, P. W. et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 1099–1105 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Abes, R., Gelize, E., Fridman, W. H. & Teillaud, J. L. Long-lasting antitumor protection by anti-CD20 antibody through cellular immune response. Blood 116, 926–934 (2010).

    CAS  PubMed  Google Scholar 

  101. Galluzzi, L. et al. Trial Watch, monoclonal antibodies in cancer therapy. Oncoimmunology 1, 28–37 (2012).

    PubMed  PubMed Central  Google Scholar 

  102. Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Clark, W. H. Jr. et al. Model predicting survival in stage I melanoma based on tumor progression. J. Natl Cancer Inst. 81, 1893–1904 (1989).

    PubMed  Google Scholar 

  104. Clemente, C. G. et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).

    CAS  PubMed  Google Scholar 

  105. Mackensen, A. et al. Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res. 53, 3569–3573 (1993).

    CAS  PubMed  Google Scholar 

  106. Tefany, F. J., Barnetson, R. S., Halliday, G. M., McCarthy, S. W. & McCarthy, W. H. Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. J. Invest. Dermatol. 97, 197–202 (1991).

    CAS  PubMed  Google Scholar 

  107. Miracco, C. et al. Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma. Oncol. Rep. 18, 1115–1122 (2007).

    PubMed  Google Scholar 

  108. Mougiakakos, D. et al. Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma. Cancer 116, 2224–2233 (2010).

    PubMed  Google Scholar 

  109. Reichert, T. E., Scheuer, C., Day, R., Wagner, W. & Whiteside, T. L. The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 91, 2136–2147 (2001).

    CAS  PubMed  Google Scholar 

  110. Shibuya, T. Y. et al. Clinical significance of poor CD3 response in head and neck cancer. Clin. Cancer Res. 8, 745–751 (2002).

    CAS  PubMed  Google Scholar 

  111. Alexe, G. et al. High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 67, 10669–10676 (2007).

    CAS  PubMed  Google Scholar 

  112. Mahmoud, S. M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011).

    PubMed  Google Scholar 

  113. Marrogi, A. J. et al. Study of tumor infiltrating lymphocytes and transforming growth factor-β as prognostic factors in breast carcinoma. Int. J. Cancer 74, 492–501 (1997).

    CAS  PubMed  Google Scholar 

  114. Menegaz, R. A., Michelin, M. A., Etchebehere, R. M., Fernandes, P. C. & Murta, E. F. Peri- and intratumoral T and B lymphocytic infiltration in breast cancer. Eur. J. Gynaecol. Oncol. 29, 321–326 (2008).

    CAS  PubMed  Google Scholar 

  115. Oldford, S. A. et al. Tumor cell expression of HLA-DM associates with a Th1 profile and predicts improved survival in breast carcinoma patients. Int. Immunol. 18, 1591–1602 (2006).

    CAS  PubMed  Google Scholar 

  116. Teschendorff, A. E. et al. Improved prognostic classification of breast cancer defined by antagonistic activation patterns of immune response pathway modules. BMC Cancer 10, 604 (2010).

    PubMed  PubMed Central  Google Scholar 

  117. Camp, B. J., Dyhrman, S. T., Memoli, V. A., Mott, L. A. & Barth, R. J. Jr. In situ cytokine production by breast cancer tumor-infiltrating lymphocytes. Ann. Surg. Oncol. 3, 176–184 (1996).

    CAS  PubMed  Google Scholar 

  118. Nakakubo, Y. et al. Clinical significance of immune cell infiltration within gallbladder cancer. Br. J. Cancer 89, 1736–1742 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sharma, P. et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc. Natl Acad. Sci. USA 104, 3967–3972 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  121. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hamanishi, J. et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104, 3360–3365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kusuda, T. et al. Relative expression levels of Th1 and Th2 cytokine mRNA are independent prognostic factors in patients with ovarian cancer. Oncol. Rep. 13, 1153–1158 (2005).

    CAS  PubMed  Google Scholar 

  124. Marth, C. et al. Interferon-γ expression is an independent prognostic factor in ovarian cancer. Am. J. Obstet. Gynecol. 191, 1598–1605 (2004).

    CAS  PubMed  Google Scholar 

  125. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cho, Y. et al. CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res. 63, 1555–1559 (2003).

    CAS  PubMed  Google Scholar 

  127. Schumacher, K., Haensch, W., Roefzaad, C. & Schlag, P. M. Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res. 61, 3932–3936 (2001).

    CAS  PubMed  Google Scholar 

  128. van Sandick, J. W. et al. Lymphocyte subsets and T h1/T h2 immune responses in patients with adenocarcinoma of the oesophagus or oesophagogastric junction: relation to pTNM stage and clinical outcome. Cancer Immunol. Immunother. 52, 617–624 (2003).

    CAS  PubMed  Google Scholar 

  129. Lv, L. et al. The accumulation and prognosis value of tumor infiltrating IL-17 producing cells in esophageal squamous cell carcinoma. PLoS ONE 6, e18219 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Baier, P. K. et al. Analysis of the T cell receptor variability of tumor-infiltrating lymphocytes in colorectal carcinomas. Tumour Biol. 19, 205–212 (1998).

    CAS  PubMed  Google Scholar 

  131. Baker, K. et al. Differential significance of tumour infiltrating lymphocytes in sporadic mismatch repair deficient versus proficient colorectal cancers: a potential role for dysregulation of the transforming growth factor-β pathway. Eur. J. Cancer 43, 624–631 (2007).

    CAS  PubMed  Google Scholar 

  132. Dalerba, P., Maccalli, C., Casati, C., Castelli, C. & Parmiani, G. Immunology and immunotherapy of colorectal cancer. Crit. Rev. Oncol. Hematol. 46, 33–57 (2003).

    PubMed  Google Scholar 

  133. Diederichsen, A. C., Hjelmborg, J. B., Christensen, P. B., Zeuthen, J. & Fenger, C. Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol. Immunother. 52, 423–428 (2003).

    CAS  PubMed  Google Scholar 

  134. Graham, D. M. & Appelman, H. D. Crohn's-like lymphoid reaction and colorectal carcinoma: a potential histologic prognosticator. Mod. Pathol. 3, 332–335 (1990).

    CAS  PubMed  Google Scholar 

  135. Halama, N. et al. The localization and density of immune cells in primary tumors of human metastatic colorectal cancer shows an association with response to chemotherapy. Cancer Immun. 9, 1 (2009).

    PubMed  PubMed Central  Google Scholar 

  136. Harrison, J. C., Dean, P. J., el-Zeky, F. & Vander Zwaag, R. From Dukes through Jass: pathological prognostic indicators in rectal cancer. Hum. Pathol. 25, 498–505 (1994).

    CAS  PubMed  Google Scholar 

  137. Jass, J. R. Lymphocytic infiltration and survival in rectal cancer. J. Clin. Pathol. 39, 585–589 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee, W. S., Park, S., Lee, W. Y., Yun, S. H. & Chun, H. K. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer 116, 5188–5199 (2010).

    PubMed  Google Scholar 

  139. Lugli, A. et al. CD8+ lymphocytes/ tumour-budding index: an independent prognostic factor representing a 'pro-/anti-tumour' approach to tumour host interaction in colorectal cancer. Br. J. Cancer 101, 1382–1392 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Menon, A. G. et al. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab. Invest. 84, 493–501 (2004).

    CAS  PubMed  Google Scholar 

  141. Naito, Y. et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 58, 3491–3494 (1998).

    CAS  PubMed  Google Scholar 

  142. Nosho, K. et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J. Pathol. 222, 350–366 (2010).

    PubMed  PubMed Central  Google Scholar 

  143. Pages, F. et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 353, 2654–2666 (2005).

    CAS  PubMed  Google Scholar 

  144. Prall, F. et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum. Pathol. 35, 808–816 (2004).

    CAS  PubMed  Google Scholar 

  145. Ropponen, K. M., Eskelinen, M. J., Lipponen, P. K., Alhava, E. & Kosma, V. M. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J. Pathol. 182, 318–324 (1997).

    CAS  PubMed  Google Scholar 

  146. Dahlin, A. M. et al. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod. Pathol. 24, 671–682 (2011).

    CAS  PubMed  Google Scholar 

  147. Nagtegaal, I. D. et al. Local and distant recurrences in rectal cancer patients are predicted by the nonspecific immune response; specific immune response has only a systemic effect-a histopathological and immunohistochemical study. BMC Cancer 1, 7 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ogino, S. et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res. 15, 6412–6420 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu, J. et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem. Biophys. Res. Commun. 407, 348–354 (2011).

    CAS  PubMed  Google Scholar 

  150. Jensen, H. K., Donskov, F., Nordsmark, M., Marcussen, N. & von der Maase, H. Increased intratumoral FOXP3-positive regulatory immune cells during interleukin-2 treatment in metastatic renal cell carcinoma. Clin. Cancer Res. 15, 1052–1058 (2009).

    CAS  PubMed  Google Scholar 

  151. Karja, V. et al. Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res. 25, 4435–4438 (2005).

    PubMed  Google Scholar 

  152. Richardsen, E., Uglehus, R. D., Due, J., Busch, C. & Busund, L. T. The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 53, 30–38 (2008).

    CAS  PubMed  Google Scholar 

  153. Vesalainen, S., Lipponen, P., Talja, M. & Syrjanen, K. Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur. J. Cancer 30A, 1797–1803 (1994).

    CAS  PubMed  Google Scholar 

  154. Al-Shibli, K. I. et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin. Cancer Res. 14, 5220–5227 (2008).

    CAS  PubMed  Google Scholar 

  155. Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    CAS  PubMed  Google Scholar 

  156. Ito, N. et al. Prognostic significance of T helper 1 and 2 and T cytotoxic 1 and 2 cells in patients with non-small cell lung cancer. Anticancer Res. 25, 2027–2031 (2005).

    CAS  PubMed  Google Scholar 

  157. Kawai, O. et al. Predominant infiltration of macrophages and CD8+ T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113, 1387–1395 (2008).

    CAS  PubMed  Google Scholar 

  158. Wakabayashi, O. et al. CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci. 94, 1003–1009 (2003).

    CAS  PubMed  Google Scholar 

  159. Chen, X. et al. Increased IL-17-producing cells correlate with poor survival and lymphangiogenesis in NSCLC patients. Lung Cancer 69, 348–354 (2010).

    PubMed  Google Scholar 

  160. Petersen, R. P. et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866–2872 (2006).

    PubMed  Google Scholar 

  161. Shimizu, K. et al. Tumor-infiltrating Foxp3+ regulatory T cells are correlated with cyclooxygenase-2 expression and are associated with recurrence in resected non-small cell lung cancer. J. Thorac. Oncol. 5, 585–590 (2010).

    PubMed  Google Scholar 

  162. Tao, H. et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75, 95–101 (2011).

    PubMed  Google Scholar 

  163. Fukunaga, A. et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28, e26–e31 (2004).

    PubMed  Google Scholar 

  164. De Monte, L. et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J. Exp. Med. 208, 469–478 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Tassi, E. et al. Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J. Immunol. 181, 6595–6603 (2008).

    CAS  PubMed  Google Scholar 

  166. Seresini, S. et al. IFN-γ produced by human papilloma virus-18 E6-specific CD4+ T cells predicts the clinical outcome after surgery in patients with high-grade cervical lesions. J. Immunol. 179, 7176–7183 (2007).

    CAS  PubMed  Google Scholar 

  167. Cai, X. Y. et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 132, 293–301 (2006).

    PubMed  Google Scholar 

  168. Wada, Y., Nakashima, O., Kutami, R., Yamamoto, O. & Kojiro, M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27, 407–414 (1998).

    CAS  PubMed  Google Scholar 

  169. Gao, Q. et al. Tumor stroma reaction-related gene signature predicts clinical outcome in human hepatocellular carcinoma. Cancer Sci. 102, 1522–1531 (2011).

    CAS  PubMed  Google Scholar 

  170. Zhang, J. P. et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J. Hepatol. 50, 980–989 (2009).

    CAS  PubMed  Google Scholar 

  171. Ubukata, H., Motohashi, G., Tabuchi, T., Nagata, H. & Konishi, S. Evaluations of interferon-γ/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J. Surg. Oncol. 102, 742–747 (2010).

    PubMed  Google Scholar 

  172. Chen, J. G. et al. Intratumoral expression of IL-17 and its prognostic role in gastric adenocarcinoma patients. Int. J. Biol. Sci. 7, 53–60 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wiegering, V. et al. TH1 predominance is associated with improved survival in pediatric medulloblastoma patients. Cancer Immunol. Immunother. 60, 693–703 (2011).

    CAS  PubMed  Google Scholar 

  174. Paulson, K. G. et al. Transcriptome-wide studies of merkel cell carcinoma and validation of intratumoral CD8+ lymphocyte invasion as an independent predictor of survival. J. Clin. Oncol. 29, 1539–1546 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (INCa) (grants 07/3D1616, PLBio2009-07 and PLBio2010), the Canceropole Ile de France (grant R09194DD), Ville de Paris, the Association pour la Recherche sur le Cancer (ARC) (grants PEMT, 07/3D1616 and 3,185), ARC, Fondation de France, INSERM, Université Pierre et Marie Curie, Université Paris Descartes, Qatar-Foundation NPRP (grant 09-1174-3-291), the European Commission (7FP, Geninca Consortium, grant 202,230) and the LabEx Immuno-Oncology. The authors thank M. C. Dieu-Nosjean, I. Cremer, D. Damotte, E. Tartour, J. L. Teillaud, as well as the other members of Immune Microenvironment and Tumours and Integrative Cancer Immunology teams of the Cordeliers Reseach Centre for their invaluable contribution. The authors thank T. Fredriksen for helping with the drawing of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Galon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Cytotoxic T cells

CD3+CD8+ effector T cells with cytotoxic granules that contain perforin and granzymes, which are released on interaction with target cells expressing cognate antigen. This leads to the death of target cells by apoptosis.

Dendritic cells

Cells that capture microorganisms or dead tumour cells and that process them to present antigen to T cells in secondary or tertiary lymphoid organs. They express high levels of co-stimulatory molecules, which allows them to activate naive T cells.

High endothelial venules

Specialized venules that occur in secondary lymphoid organs, except the spleen. They allow continuous transmigration of lymphocytes as a consequence of the constitutive expression of adhesion molecules and chemokines at their luminal surface.

Macrophages

Can be subdivided according to their cellular properties and cytokine secretion profiles. M1 macrophages secrete pro-inflammatory cytokines (IL-1, IL-6 and TNF), release reactive oxygen and reactive nitrate species and have a pro-inflammatory role. M2 macrophages secrete IL-4, IL-10, IL-13 and TGFβ and have an anti-inflammatory role, promote angiogenesis and favour tumour progression.

Memory T cells

CD3+CD4+CD45RO+ and CD3+CD8+CD45RO+ cells that have encountered antigen and that respond faster and with increased intensity on antigenic stimulation compared with naive T cells.

Myeloid-derived suppressor cells

(MDSCs). Heterogeneous population of polymorphonuclear and monocytic CD11b+GR1+ cells that inhibit T cell activation.

Naive T cells

CD3+CD4+ and CD3+CD8+ cells that differentiate into effector T cells (CD4+ T helper cells or CD8+ cytotoxic T cells) in secondary lymphoid organs or TLS after stimulation with three signals: antigen, co-stimulatory molecules and cytokines.

Regulatory T (TReg) cells

Population of CD3+CD4+ T cells that inhibit effector B and T cells. Some produce cytokines with immunosuppressive activities; for example, IL-10 and TGFβ. They have a central role in suppressing anti-self immune responses to prevent autoimmune diseases.

Tertiary lymphoid structures

(TLS). Ectopic lymphoid aggregates that are generated during the process of chronic immune stimulation and that exhibit the structural characteristics of secondary lymphoid organs.

T helper cells

Populations of CD3+CD4+ effector T cells that secrete cytokines with differential activities. TH1 cells produce IL-2 and IFNγ and favour cellular immunity (acting on CD8+ cytotoxic T cells, NK cells and macrophages). TH2 cells produce IL-4, IL-5 and IL-13 and favour humoral immunity (acting on B cells). TH17 cells produce IL-17A, IL-17F, IL-21 and IL-22 and favour anti-microbial tissue inflammation (acting on epithelial and endothelial cells, fibroblasts and immune cells).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fridman, W., Pagès, F., Sautès-Fridman, C. et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12, 298–306 (2012). https://doi.org/10.1038/nrc3245

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3245

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer