Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can corruption of chromosome cohesion create a conduit to cancer?

A Corrigendum to this article was published on 01 March 2011

This article has been updated

Abstract

Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A broad overview of cohesin.
Figure 2: Topography and sequence variants of key SCC proteins and NIPBL in physiological and pathological states.
Figure 3: mRNA expression of cohesins and related genes in primary epithelial cancers.
Figure 4: Comparative genomic hybridization (CGH) data showing cohesion-related loci changes in breast cancer.
Figure 5: Examples of cancer pathways in which cohesin and its regulatory and accessory proteins are implicated.

Similar content being viewed by others

Change history

  • 26 February 2011

    In figure 4 the REC8 locus was labelled 12q11.2 intsead of 14q11.2. This has been corrected on both the html and pdf versions.

References

  1. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47–57 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Watrin, E. & Peters, J. M. Cohesin and DNA damage repair. Exp. Cell Res. 312, 2687–2693 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Covo, S., Westmoreland, J. W., Gordenin, D. A. & Resnick, M. A. Cohesin Is limiting for the suppression of DNA damage-induced recombination between homologous chromosomes. PLoS Genet. 6, e1001006 (2010).

  7. Jessberger, R. Cohesin's dual role in the DNA damage response: repair and checkpoint activation. EMBO J. 28, 2491–2493 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bauerschmidt, C. et al. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38, 477–487 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Jessberger, R., Podust, V., Hubscher, U. & Berg, P. A mammalian protein complex that repairs double-strand breaks and deletions by recombination. J. Biol. Chem. 268, 15070–15079 (1993).

    CAS  PubMed  Google Scholar 

  10. Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, S. T., Xu, B. & Kastan, M. B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16, 560–570 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, H. et al. Rad21-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS One 5, e12112 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Horsfield, J. A. et al. Cohesin-dependent regulation of Runx genes. Development 134, 2639–2649 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Bausch, C. et al. Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae. Mol. Cell Biol. 27, 8522–8532 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dorsett, D. Cohesin, gene expression and development: lessons from Drosophila. Chromosome Res. 17, 185–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, J. et al. Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol. 7, e1000119 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Birkenbihl, R. P. & Subramani, S. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20, 6605–6611 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Atienza, J. M. et al. Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. Mol. Cancer Ther. 4, 361–368 (2005).

    CAS  PubMed  Google Scholar 

  19. Xu, H. et al. Enhanced RAD21 cohesin expression confers poor prognosis and resistance to chemotherapy in high grade luminal, basal and HER2 breast cancers. Breast Cancer Resarch 21 Jan 2011 (doi: 10.1186/bcr2814).

  20. Ghiselli, G. & Iozzo, R. V. Overexpression of bamacan/SMC3 causes transformation. J. Biol. Chem. 275, 20235–20238 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Rhodes, D. R. et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc. Natl Acad. Sci. USA 101, 9309–9314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, R., Lu, W., Chen, J., McCabe, C. J. & Melmed, S. Overexpressed pituitary tumor-transforming gene causes aneuploidy in live human cells. Endocrinology 144, 4991–4998 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, N. et al. Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc. Natl Acad. Sci. USA 105, 13033–13038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salehi, F., Kovacs, K., Scheithauer, B. W., Lloyd, R. V. & Cusimano, M. Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update. Endocr. Relat Cancer 15, 721–743 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Oikawa, K. et al. Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res. 64, 3545–3549 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, G. et al. Correlation of invasion and metastasis of cancer cells, and expression of the RAD21 gene in oral squamous cell carcinoma. Virchows Arch. 448, 435–441 (2006).

    CAS  Google Scholar 

  28. Porkka, K. P., Tammela, T. L., Vessella, R. L. & Visakorpi, T. RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. Genes Chromosom. Cancer 39, 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Roe, O. D. et al. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS ONE 4, e6554 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ryu, B., Kim, D. S., Deluca, A. M. & Alani, R. M. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE 2, e594 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Iwaizumi, M. et al. Human Sgo1 Down-regulation Leads to Chromosomal Instability in Colorectal Cancer. Gut 58, 249–260 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Hagemann, C. et al. The cohesin-interacting protein, precocious dissociation of sisters 5A/sister chromatid cohesion protein 112, is up-regulated in human astrocytic tumors. Int. J. Mol. Med. 27, 39–51 (2011).

    CAS  PubMed  Google Scholar 

  33. Barber, T. D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl Acad. Sci. USA 105, 3443–3448 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nasmyth, K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35, 673–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Watrin, E. & Peters, J. M. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J. 28, 2625–2635 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hakimi, M. A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418, 994–998 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Glynn, E. F. et al. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol. 2, E259 (2004).

  38. Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature 430, 573–578 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kang, H. & Lieberman, P. M. Cell cycle control of Kaposi's sarcoma-associated herpesvirus latency transcription by CTCF-cohesin interactions. J. Virol. 83, 6199–6210 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bowers, S. R. et al. A conserved insulator that recruits CTCF and cohesin exists between the closely related but divergently regulated interleukin-3 and granulocyte-macrophage colony-stimulating factor genes. Mol. Cell Biol. 29, 1682–1693 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451, 796–801 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J. 27, 654–666 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rhodes, J. M. et al. Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved. Dev. Biol. 344, 637–649 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wendt, K. S. & Peters, J. M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Dorsett, D. et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Nasmyth, K. & Haering, C. H. Cohesin: Its Roles and Mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089–3114 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Wood, A. J., Severson, A. F. & Meyer, B. J. Condensin and cohesin complexity: the expanding repertoire of functions. Nature Rev. Genet. 11, 391–404 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. McKay, M. J. et al. Sequence conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in human and mouse. Genomics 36, 305–315 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Jessberger, R., Riwar, B., Baechtold, H. & Akhmedov, A. T. SMC proteins constitute two subunits of the mammalian recombination complex RC-1. EMBO J. 15, 4061–4068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parisi, S. et al. Rec8p, a meiotic recombination and sister chromatid cohesion phosphoprotein of the Rad21p family conserved from fission yeast to humans. Mol. Cell Biol. 19, 3515–3528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hirano, T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16, 399–414 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nature Rev. Mol. Cell Biol. 3, 767–778 (2002).

    Article  CAS  Google Scholar 

  55. Hirano, T., Mitchison, T. J. & Swedlow, J. R. The SMC family: from chromosome condensation to dosage compensation. Curr. Opin. Cell Biol. 7, 329–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Hirano, T. At. the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol. 7, 311–322 (2006).

    Article  CAS  Google Scholar 

  57. Haering, C. H., Lowe, J., Hochwagen, A. & Nasmyth, K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9, 773–788 (2002).

    CAS  Google Scholar 

  58. Haering, C. H. et al. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15, 951–964 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, N. et al. A handcuff model for the cohesin complex. J. Cell Biol. 183, 1019–1031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang, C. E., Milutinovich, M. & Koshland, D. Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 537–542 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Molnar, M., Bahler, J., Sipiczki, M. & Kohli, J. The rec8 gene of Schizosaccharomyces pombe is involved in linear element formation, chromosome pairing and sister-chromatid cohesion during meiosis. Genetics 141, 61–73 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tomonaga, T. et al. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14, 2757–2770 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pasierbek, P. et al. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev. 15, 1349–1360 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Revenkova, E., Eijpe, M., Heyting, C., Gross, B. & Jessberger, R. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell Biol. 21, 6984–6998 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Canudas, S. & Smith, S. Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells. J. Cell Biol. 187, 165–173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pezzi, N. et al. STAG3, a novel gene encoding a protein involved in meiotic chromosome pairing and location of STAG3-related genes flanking the Williams-Beuren syndrome deletion. FASEB J. 14, 581–592 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Parra, M. T. et al. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 117, 1221–1234 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Xu, H. et al. A new role for the mitotic RAD21/SCC1 cohesin in meiotic chromosome cohesion and segregation in the mouse. EMBO Rep. 5, 378–384 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Ciosk, R. et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5, 243–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Rollins, R. A., Korom, M., Aulner, N., Martens, A. & Dorsett, D. Drosophila nipped-B protein supports sister chromatid cohesion and opposes the stromalin/Scc3 cohesion factor to facilitate long-range activation of the cut gene. Mol. Cell Biol. 24, 3100–3111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ivanov, D. et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12, 323–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Hou, F. & Zou, H. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol. Biol. Cell 16, 3908–3918 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tanaka, K., Hao, Z., Kai, M. & Okayama, H. Establishment and maintenance of sister chromatid cohesion in fission yeast by a unique mechanism. EMBO J. 20, 5779–5790 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hartman, T., Stead, K., Koshland, D. & Guacci, V. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151, 613–626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Panizza, S., Tanaka, T., Hochwagen, A., Eisenhaber, F. & Nasmyth, K. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10, 1557–1564 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Terret, M. E., Sherwood, R., Rahman, S., Qin, J. & Jallepalli, P. V. Cohesin acetylation speeds the replication fork. Nature 462, 231–234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Peters, J. M. & Bhaskara, V. Cohesin acetylation: from antiestablishment to establishment. Mol. Cell 34, 1–2 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S. phase sister chromatid cohesion in both human and yeast. Mol. Cell 31, 143–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Z., Castano, I. B., De Las Penas, A., Adams, C. & Christman, M. F. Pol κ: A DNA polymerase required for sister chromatid cohesion. Science 289, 774–779 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell Biol. 21, 3144–3158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mayer, M. L., Gygi, S. P., Aebersold, R. & Hieter, P. Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7, 959–970 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Uhlmann, F., Lottspeich, F. & Nasmyth, K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400, 37–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Rao, H., Uhlmann, F., Nasmyth, K. & Varshavsky, A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410, 955–959 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kitajima, T. S., Hauf, S., Ohsugi, M., Yamamoto, T. & Watanabe, Y. Human Bub1 defines the persistent cohesion site along the mitotic chromosome by affecting Shugoshin localization. Curr. Biol. 15, 353–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Pouwels, J. et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle 6, 1579–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Nakajima, M. et al. The complete removal of cohesin from chromosome arms depends on separase. J. Cell Sci. 120, 4188–4196 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Rivera, T. & Losada, A. Shugoshin and PP2A, shared duties at the centromere. Bioessays 28, 775–779 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora, B. Dev. Cell 11, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Takata, H. et al. PHB2 protects sister-chromatid cohesion in mitosis. Curr. Biol. 17, 1356–1361 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Boos, D., Kuffer, C., Lenobel, R., Korner, R. & Stemmann, O. Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase. J. Biol. Chem. 283, 816–823 (2007).

    Article  PubMed  Google Scholar 

  102. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871–1883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shah, J. V. & Cleveland, D. W. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997–1000 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Wang, Z., Yu, R. & Melmed, S. Mice lacking pituitary tumor transforming gene show testicular and splenic hypoplasia, thymic hyperplasia, thrombocytopenia, aberrant cell cycle progression, and premature centromere division. Mol. Endocrinol. 15, 1870–1879 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Musio, A. et al. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nature Genet. 38, 528–530 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Deardorff, M. A. et al. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 80, 485–494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pie, J. et al. Mutations and variants in the cohesion factor genes NIPBL, SMC1A, and SMC3 in a cohort of 30 unrelated patients with Cornelia de Lange syndrome. Am. J. Med. Genet. A 152A, 924–929 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Vega, H. et al. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nature Genet. 37, 468–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Vega, H. et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J. Med. Genet. 47, 30–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Krantz, I. D. et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nature Genet. 36, 631–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. van der Lelij, P. et al. Warsaw breakage syndrome, a cohesinopathy associated with mutations in the XPD helicase family member DDX11/ChlR1. Am. J. Hum. Genet. 86, 262–266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Newman, J. J. & Young, R. A. Connecting Transcriptional Control to Chromosome Structure and Human Disease. Cold Spring Harb. Symp. Quant. Biol. 5 Jan 2011 (doi:10.1101/sqb.2010.75.016).

  114. Mannini, L., Menga, S. & Musio, A. The expanding universe of cohesin functions: a new genome stability caretaker involved in human disease and cancer. Hum. Mutat. 31, 623–630 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell 8, 949–961 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, B. et al. Mice lacking sister chromatid cohesion protein PDS5B exhibit developmental abnormalities reminiscent of Cornelia de Lange syndrome. Development 134, 3191–3201 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Kawauchi, S. et al. Multiple organ system defects and transcriptional dysregulation in the Nipbl(+/−) mouse, a model of Cornelia de Lange Syndrome. PLoS Genet. 5, e1000650 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Parry, D. M., Mulvihill, J. J., Tsai, S. E., Kaiser-Kupfer, M. I. & Cowan, J. M. SC phocomelia syndrome, premature centromere separation, and congenital cranial nerve paralysis in two sisters, one with malignant melanoma. Am. J. Med. Genet. 24, 653–672 (1986).

    Article  CAS  PubMed  Google Scholar 

  119. Wenger, S. L. et al. Rhabdomyosarcoma in Roberts syndrome. Cancer Genet. Cytogenet. 31, 285–289 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Turnbull, C. & Rahman, N. Genetic predisposition to breast cancer: past, present, and future. Annu. Rev. Genomics Hum. Genet. 9, 321–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Van den Berg, D. J. & Francke, U. Sensitivity of Roberts syndrome cells to gamma radiation, mitomycin C, and protein synthesis inhibitors. Somat. Cell. Mol. Genet. 19, 377–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Goh, E. S. et al. The Roberts syndrome/SC phocomelia spectrum--a case report of an adult with review of the literature. Am. J. Med. Genet. A 152A, 472–478 (2010).

    Article  PubMed  Google Scholar 

  123. Liu, J. et al. SMC1A expression and mechanism of pathogenicity in probands with X-linked Cornelia de Lange Syndrome. Hum. Mutat. 30, 1535–1542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Revenkova, E. et al. Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to, D. N. A. Hum. Mol. Genet. 18, 418–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Gerkes, E. H., van der Kevie-Kersemaekers, A. M., Yakin, M., Smeets, D. F. & van Ravenswaaij-Arts, C. M. The importance of chromosome studies in Roberts syndrome/SC phocomelia and other cohesinopathies. Eur. J. Med. Genet. 53, 40–44 (2009).

    Article  PubMed  Google Scholar 

  126. Tomkins, D. J. Premature centromere separation and the prenatal diagnosis of Roberts syndrome. Prenat. Diagn 9, 450–452 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Burns, M. A. & Tomkins, D. J. Hypersensitivity to mitomycin C cell-killing in Roberts syndrome fibroblasts with, but not without, the heterochromatin abnormality. Mutat. Res. 216, 243–249 (1989).

    Article  CAS  PubMed  Google Scholar 

  128. van der Lelij, P. et al. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PLoS ONE 4, e6936 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kajii, T. et al. Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: report of five infants. Am. J. Med. Genet. 104, 57–64 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Callier, P. et al. Microcephaly is not mandatory for the diagnosis of mosaic variegated aneuploidy syndrome. Am. J. Med. Genet. A 137, 204–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Mannini, L., Liu, J., Krantz, I. D. & Musio, A. Spectrum and consequences of SMC1A mutations: the unexpected involvement of a core component of cohesin in human disease. Hum. Mutat. 31, 5–10 (2009).

    Article  CAS  Google Scholar 

  132. Hallson, G. et al. The Drosophila cohesin subunit Rad21 is a trithorax group (trxG) protein. Proc. Natl Acad. Sci. USA 105, 12405–12410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tfelt-Hansen, J., Kanuparthi, D. & Chattopadhyay, N. The emerging role of pituitary tumor transforming gene in tumorigenesis. Clin. Med. Res. 4, 130–137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kakar, S. S. & Malik, M. T. Suppression of lung cancer with siRNA targeting PTTG. Int. J. Oncol. 29, 387–395 (2006).

    CAS  PubMed  Google Scholar 

  135. El-Naggar, S. M., Malik, M. T. & Kakar, S. S. Small interfering RNA against PTTG: a novel therapy for ovarian cancer. Int. J. Oncol. 31, 137–143 (2007).

    CAS  PubMed  Google Scholar 

  136. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Meyer, R. et al. Overexpression and mislocalization of the chromosomal segregation protein separase in multiple human cancers. Clin. Cancer Res. 15, 2703–2710 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pino, M. S. & Chung, D. C. The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059–2072 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Hoque, M. T. & Ishikawa, F. Human chromatid cohesin component hRad21 is phosphorylated in M phase and associated with metaphase centromeres. J. Biol. Chem. 276, 5059–5067 (2001).

    Article  CAS  PubMed  Google Scholar 

  140. Chen, F. et al. Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. J. Biol. Chem. 277, 16775–16781 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Pati, D., Zhang, N. & Plon, S. E. Linking sister chromatid cohesion and apoptosis: role of Rad21. Mol. Cell Biol. 22, 8267–8277 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Heo, S. J., Tatebayashi, K., Kato, J. & Ikeda, H. The RHC21 gene of budding yeast, a homologue of the fission yeast rad21+ gene, is essential for chromosome segregation. Mol. Gen. Genet. 257, 149–156 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Jallepalli, P. V. et al. Securin is required for chromosomal stability in human cells. Cell 105, 445–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Waizenegger, I., Gimenez-Abian, J. F., Wernic, D. & Peters, J. M. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368–1378 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Begus-Nahrmann, Y. et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nature Genet. 41, 1138–1143 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Diaz-Martinez, L. A. & Clarke, D. J. Chromosome cohesion and the spindle checkpoint. Cell Cycle 8, 2733–2740 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Holt, J. E. & Jones, K. T. Control of homologous chromosome division in the mammalian oocyte. Mol. Hum. Reprod. 15, 139–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Yu, H. & Tang, Z. Bub1 multitasking in mitosis. Cell Cycle 4, 262–265 (2005).

    CAS  PubMed  Google Scholar 

  149. Soshnikova, N. & Duboule, D. Epigenetic regulation of Hox gene activation: the waltz of methyls. Bioessays 30, 199–202 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Martin-Perez, D., Piris, M. A. & Sanchez-Beato, M. Polycomb proteins in hematologic malignancies. Blood 116, 5465–5475 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Nikolaev, L. G., Akopov, S. B., Didych, D. A. & Sverdlov, E. D. Vertebrate protein CTCF and its multiple roles in a large-scale regulation of genome activity. Curr. Genomics 10, 294–302 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Filippova, G. N. Genetics and epigenetics of the multifunctional protein CTCF. Curr. Top. Dev. Biol. 80, 337–360 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Hadjur, S. et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460, 410–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet. 5, e1000739 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Cui, H. Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer. Dis. Markers 23, 105–112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jelinic, P. & Shaw, P. Loss of imprinting and cancer. J. Pathol. 211, 261–268 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Miele, A. & Dekker, J. Long-range chromosomal interactions and gene regulation. Mol. Biosyst 4, 1046–1057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Potts, P. R., Porteus, M. H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Strom, L., Lindroos, H. B., Shirahige, K. & Sjogren, C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16, 1003–1015 (2004).

    Article  PubMed  Google Scholar 

  160. Sjogren, C. & Nasmyth, K. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr. Biol. 11, 991–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Heidinger-Pauli, J. M., Unal, E., Guacci, V. & Koshland, D. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol. Cell 31, 47–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Unal, E. et al. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16, 991–1002 (2004).

    Article  PubMed  Google Scholar 

  163. Kim, B. J. et al. Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells. J. Biol. Chem. 285, 22784–22792 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Yazdi, P. T. et al. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16, 571–582 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 98, 91–103 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Nasmyth, K., Peters, J. M. & Uhlmann, F. Splitting the chromosome: cutting the ties that bind sister chromatids. Novartis Found. Symp. 237, 113–133 (2001).

    CAS  PubMed  Google Scholar 

  167. Doll, E. et al. Cohesin and recombination proteins influence the G1-to-S. transition in azygotic meiosis in Schizosaccharomyces pombe. Genetics 180, 727–740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Bishop, A. J. & Schiestl, R. H. Role of homologous recombination in carcinogenesis. Exp. Mol. Pathol. 74, 94–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Reliene, R., Bishop, A. J. & Schiestl, R. H. Involvement of homologous recombination in carcinogenesis. Adv. Genet. 58, 67–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Moynahan, M. E. & Jasin, M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nature Rev. Mol. Cell Biol. 11, 196–207 (2010).

    Article  CAS  Google Scholar 

  171. Modesti, M. & Kanaar, R. Homologous recombination: from model organisms to human disease. Genome Biol. 2, 1014.1–104.5 (2001).

    Article  Google Scholar 

  172. Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nature Rev. Cancer 8, 193–204 (2008).

    Article  CAS  Google Scholar 

  173. Park, M. S. Expression of human RAD52 confers resistance to ionizing radiation in mammalian cells. J. Biol. Chem. 270, 15467–15470 (1995).

    Article  CAS  PubMed  Google Scholar 

  174. Husain, A., He, G., Venkatraman, E. S. & Spriggs, D. R. BRCA1 up-regulation is associated with repair-mediated resistance to cis-diamminedichloroplatinum(II). Cancer Res. 58, 1120–1123 (1998).

    CAS  PubMed  Google Scholar 

  175. Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature Rev. Cancer 8, 180–192 (2008).

    Article  CAS  Google Scholar 

  176. Evers, B., Helleday, T. & Jonkers, J. Targeting homologous recombination repair defects in cancer. Trends Pharmacol. Sci. 31, 372–380 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Losada, A. & Hirano, T. Biology in pictures. New light on sticky sisters. Curr. Biol. 10, R615 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Nagao, K., Adachi, Y. & Yanagida, M. Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature 430, 1044–1048 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Kim, J. S., Krasieva, T. B., LaMorte, V., Taylor, A. M. & Yokomori, K. Specific recruitment of human cohesin to laser-induced DNA damage. J. Biol. Chem. 277, 45149–45153 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. van den Bosch, M., Bree, R. T. & Lowndes, N. F. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep. 4, 844–849 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Ball, A. R., Jr. & Yokomori, K. Damage-induced reactivation of cohesin in postreplicative DNA repair. Bioessays 30, 5–9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Stursberg, S., Riwar, B. & Jessberger, R. Cloning and characterization of mammalian SMC1 and SMC3 genes and proteins, components of the DNA recombination complexes RC-1. Gene 228, 1–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  184. Warren, W. D., Lin, E., Nheu, T. V., Hime, G. R. & McKay, M. J. Drad21, a Drosophila rad21 homologue expressed in S-phase cells. Gene 250, 77–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Yan, J. et al. Mutational and genotype-phenotype correlation analyses in 28 Polish patients with Cornelia de Lange syndrome. Am. J. Med. Genet. A 140, 1531–1541 (2006).

    Article  PubMed  CAS  Google Scholar 

  186. Sehl, M. E. et al. Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer. Clin. Cancer Res. 15, 2192–2203 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ghiselli, G., Coffee, N., Munnery, C. E., Koratkar, R. & Siracusa, L. D. The cohesin SMC3 is a target the for beta-catenin/TCF4 transactivation pathway. J. Biol. Chem. 278, 20259–20267 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Ramsay and M.-C. Vozenin for comments on the manuscript. H.X. and M.J.M. were supported by grants from the Australian National Health and Medical Research Council (Project grants 400207, 400310 and 1007659) and the Cancer Council Victoria (091224).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Catalogue of Somatic Mutations in Cancer (COSMIC) database

Progentix

Stanford microarray database

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Tomaszewski, J. & McKay, M. Can corruption of chromosome cohesion create a conduit to cancer?. Nat Rev Cancer 11, 199–210 (2011). https://doi.org/10.1038/nrc3018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3018

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer