Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CDC25 phosphatases in cancer cells: key players? Good targets?

Key Points

  • Cell division cycle 25 (CDC25) phosphatases are key regulators of the eukaryotic cell cycle. They are required to control cyclin-dependent kinase (CDK) dephosphorylation and activation in a strict spatio-temporal manner.

  • CDC25A, B and C expression and activity is tightly regulated by many mechanisms, including alternative exon splicing, phosphorylation–dephosphorylation cycles, interactions with partners such as 14-3-3 proteins, intracellular localization and cell-cycle controlled degradation.

  • CDC25 phosphatases are key targets of the checkpoint machinery activated in response to DNA damage. They are functionally inactivated or degraded to stop cell-cycle progression. CDC25B activity is required for checkpoint recovery.

  • CDC25A and CDC25B overexpression are frequently found in many cancers, and are often associated with high-grade tumours and poor prognosis.

  • The contribution of CDC25 phosphatases to tumorigenesis might be related to the genetic instability associated with the checkpoint-abrogating effect of their overexpression.

  • Compounds that inhibit CDC25 phosphatase activities are currently being developed. The most potent quinonoid-based compounds identified so far are active on xenografted tumour models.

Abstract

Cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell cycle phases during normal cell division, and in the event of DNA damage they are key targets of the checkpoint machinery that ensures genetic stability. Taking only this into consideration, it is not surprising that CDC25 overexpression has been reported in a significant number of human cancers. However, in light of the significant body of evidence detailing the stringent complexity with which CDC25 activities are regulated, the significance of CDC25 overexpression in a subset of cancers and its association with poor prognosis are proving difficult to assess. We will focus on the roles of CDC25 phosphatases in both normal and abnormal cell proliferation, provide a critical assessment of the current data on CDC25 overexpression in cancer, and discuss both current and future therapeutic strategies for targeting CDC25 activity in cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CDC25 family from an evolutionary perspective.
Figure 2: CDC25 phosphatases control key cell cycle transitions.
Figure 3: Multiple key phosphorylation events regulate CDC25 phosphatases.
Figure 4: The checkpoint hurdle to enter mitosis.
Figure 5: Overexpression of CDC25 protein in human cancers.

Similar content being viewed by others

References

  1. Boudolf, V., Inze, D. & De Veylder, L. What if higher plants lack a CDC25 phosphatase? Trends Plant Sci. 11, 474–479 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Galaktionov, K. & Beach, D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67, 1181–1194 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Sadhu, K., Reed, S. I., Richardson, H. & Russell, P. Human homolog of fission yeast cdc25 mitotic inducer is predominantly expressed in G2. Proc. Natl Acad. Sci. USA 87, 5139–5143 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nagata, A., Igarashi, M., Jinno, S., Suto, K. & Okayama, H. An additional homolog of the fission yeast cdc25 gene occurs in humans and is highly expressed in some cancer cells. The new Biologist 3, 959–968 (1991). This was the first study reporting the existence of multiple human homologues of the yeast cdc25+ gene and also the first report of CDC25 overexpression in cancer cell lines.

    CAS  PubMed  Google Scholar 

  5. Izumi, T. & Maller, J. L. Elimination of cdc2 phosphorylation sites in the cdc25 phosphatase blocks initiation of M-phase. Mol. Cell Biol. 4, 1337–1350 (1993).

    Article  CAS  Google Scholar 

  6. Okazaki, K. et al. Isolation of a cDNA encoding the xenopus homologue of mammalian Cdc25A that can induce meiotic maturation of oocytes. Gene 178, 111–114 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Benazeraf, B. et al. Identification of an unexpected link between the Shh pathway and a G2/M regulator, the phosphatase CDC25B. Dev. Biol. 294, 133–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Wegener, S., Hampe, W., Herrmann, D. & Schaller, H. C. Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C. Eur. J. Cell Biol. 79, 810–815. (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Baldin, V., Cans, C., Superti-Furga, G. & Ducommun, B. Alternative splicing of the human CDC25B tyrosine phoshatase. Possible implications for growth control? Oncogene 14, 2485–2495 (1997). The first report that multiple CDC25B variants derive from a single mRNA by alternative splicing events.

    Article  CAS  PubMed  Google Scholar 

  10. Forrest, A. R. et al. Multiple splicing variants of cdc25B regulate G2/M progression. Biochem. Biophys. Res. Commun. 260, 510–515 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Bureik, M. et al. An additional transcript of the cdc25C gene from A431 cells encodes a functional protein. Int. J. Oncol. 17, 1251–1258. (2000).

    CAS  PubMed  Google Scholar 

  12. Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986).

    Article  CAS  PubMed  Google Scholar 

  13. Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Kaldis, P. The cdk-activating kinase (CAK): from yeast to mammals. Cell Mol. Life Sci. 55, 284–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Kristjansdottir, K. & Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol. 11, 1043–1051 (2004). A comprehensive review on the different methods used to detect CDC25 overexpression in human cancer.

    Article  CAS  PubMed  Google Scholar 

  16. Blomberg, I. & Hoffmann, I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol. Cell Biol. 19, 6183–6194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffman, I., Draetta, I. & Karsenti, G. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 13, 4302–4310 (1994).

    Article  Google Scholar 

  18. Jinno, S. et al. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Molinari, M., Mercurio, C., Dominguez, J., Goubin, F. & Draetta, G. F. Human Cdc25 A inactivation in response to S phase inhibition and its role in preventing premature mitosis. EMBO Rep. 1, 71–79. (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, H., Watkins, J. L. & Piwnica-Worms, H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc. Natl Acad. Sci. USA 99, 14795–14800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindqvist, A., Kallstrom, H., Lundgren, A., Barsoum, E. & Rosenthal, C. K. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J. Cell Biol. 171, 35–45 (2005). An important study exploring the relative roles of CDC25A and CDC25B in inducing mitotic onset. The authors show that CDC25B is required for the initial activation of CDK1–cyclin B at the centrosomes, whereas CDC25A is involved in chromatin condensation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mailand, N. et al. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 21, 5911–5920 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boutros, R., Dozier, C. & Ducommun, B. The when and wheres of CDC25 phosphatases. Curr. Opin. Cell Biol. 18, 185–191 (2006). A detailed review of the complex mechanisms that regulate CDC25 activities throughout the cell cycle.

    Article  CAS  PubMed  Google Scholar 

  24. Millar, J. et al. p55 cdc25 is a nuclear phosphoprotein required for the initiation of mitosis in human cells. Proc. Natl Acad. Sci. USA 88, 10500–10504 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lammer, C. et al. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J. Cell Sci. 111, 2445–2453 (1998).

    CAS  PubMed  Google Scholar 

  26. Gabrielli, B. G. et al. Cytoplasmic accumulation of CDC25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J. Cell Sci. 109, 1081–1093 (1996). The first demonstration of a link between cytoplasmic CDC25B accumulation and centrosomal events that occur during the G2–M transition.

    CAS  PubMed  Google Scholar 

  27. De Souza, C. P., Ellem, K. A. & Gabrielli, B. G. Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp. Cell Res. 257, 11–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Gabrielli, B. G., Clarck, J. M., McCormack, A. & Ellem, K. A. O. Hyperphosphorylation of the N-terminal domain of cdc25 regulates activity toward cyclinB1/cdc2 but not cyclin A/cdk2. J. Biol. Chem. 272, 28607–28614 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Turowski, P. et al. Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol. Biol. Cell 14, 2984–2998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Garner-Hamrick, P. A. & Fischer, C. Antisense phosphoorthioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persitent antiproliferative effects. Int. J. Cancer 76, 720–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Ferguson, A. M., White, L. S., Donovan, P. J. & Piwnica-Worms, H. Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol. Cell Biol. 25, 2853–2860 (2005). An important study in which the authors challenge the idea that all three CDC25 isoforms are required for normal cell-cycle progression, by successfully generating mice that lack both CDC25B and CDC25C without any obvious defects in cell-cycle function or checkpoint responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lincoln, A. J. et al. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nature Genet. 30, 446–449 (2002). An interesting study showing that Cdc25b−/− female mice are sterile because of permanent meiotic arrest, resulting from lack of maturation promoting factor (MPF; CDK1-cyclinB1 complex) activity.

    Article  CAS  PubMed  Google Scholar 

  33. Karlsson-Rosenthal, C. & Millar, J. B. Cdc25: mechanisms of checkpoint inhibition and recovery. Trends Cell Biol. 16, 285–292 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Cazales, M. et al. CDC25B phosphorylation by Aurora-A occurs at the G2/M transition and is inhibited by DNA damage. Cell Cycle 4, 1233–1238 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Dutertre, S. et al. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J. Cell Sci. 117, 2523–2531 (2004). This study demonstrates that phosphorylation by Aurora A is required for CDC25B activity and localization to the centrosomes to initiate mitotic entry.

    Article  CAS  PubMed  Google Scholar 

  36. Theis-Febvre, N. et al. Protein kinase CK2 regulates CDC25B phosphatase activity. Oncogene 22, 220–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hoffmann, I., Clarke, P., Marcote, M. J., Karsenti, E. & Draetta, G. Phosphorylation and activation of human cdc25-C by cdc2-cyclin B and its involvement in the self amplification of MPF at mitosis. EMBO J. 12, 53–63 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  39. Karaiskou, A., Jessus, C., Brassac, T. & Ozon, R. Phosphatase 2A and polo kinase, two antagonistic regulators of cdc25 activation and MPF auto-amplification. J Cell Sci. 112, 3747–3756 (1999).

    CAS  PubMed  Google Scholar 

  40. Kumagaï, A. & Dunphy, W. G. Purification and molecular cloning of Plx1, a Cdc25-reg ulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996).

    Article  PubMed  Google Scholar 

  41. Qian, Y. W., Erikson, E., Li, C. & Maller, J. L. Activated polo-like kinase Plx1 is required at multiple points during mitosis in Xenopus laevis. Mol. Cell Biol. 18, 4262–4271 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roshak, A. K. et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal. 12, 405–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Myer, D. L., Bahassi el, M. & Stambrook, P. J. The Plk3-Cdc25 circuit. Oncogene 24, 299–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Toyoshima-Morimoto, F., Taniguchi, E. & Nishida, E. Plk1 promotes nuclear translocation of human Cdc25C during prophase. EMBO Rep. 3, 341–348 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hermeking, H. & Benzinger, A. 14–3-3 proteins in cell cycle regulation. Semin. Cancer Biol. 16, 183–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Davezac, N. et al. Regulation of CDC25B phosphatases subcellular localization. Oncogene 19, 2179–2185 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Loffler, H. et al. Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle 1 November 2006 (Epub ahead of print).

  48. Mils, V. et al. Specific interaction between 14. 3. 3 isoforms and the human CDC25B phosphatase. Oncogene 19, 1257–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Sanchez, Y. et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497–1501 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Kramer, A. et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nature Cell Biol. 6, 884–891 (2004). An interesting study in which CHK1 is reported to localize to the centrosomes of interphase cells, and this pool of CHK1 functions to prevent the premature activation of CDK1–cyclin B.

    Article  PubMed  CAS  Google Scholar 

  51. Schmitt, E. et al. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J. Cell Sci. 119, 4269–4275 (2006). This study shows that CHK1 phosphorylates CDC25B in vitro and in vivo during interphase in the absence of DNA damage, in order to inhibit its mitosis-inducing activity.

    Article  CAS  PubMed  Google Scholar 

  52. Mirey, G. et al. CDC25B phosphorylated by pEg3 localizes to the centrosome and the spindle poles at mitosis. Cell Cycle 4, 806–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, M. S., Ryan, C. E. & Piwnica-Worms, H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14–3-3 binding. Mol. Cell Biol. 23, 7488–7497 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Donzelli, M. et al. Dual mode of degradation of Cdc25 A phosphatase. EMBO J. 21, 4875–4884 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Busino, L., Chiesa, M., Draetta, G. F. & Donzelli, M. Cdc25A phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23, 2050–2056 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Jin, J. et al. SCFβ-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 17, 3062–3074 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Donzelli, M. et al. Hierarchical order of phosphorylation events commits Cdc25A to βTrCP-dependent degradation. Cell Cycle 3, 469–471 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Baldin, V., Cans, C., Knibiehler, M. & Ducommun, B. Phosphorylation of human CDC25B phosphatase by CDK1/cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem. 272, 32731–32735 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Kanemori, Y., Uto, K. & Sagata, N. β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc. Natl Acad. Sci. USA 102, 6279–6284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hurley, P. J. & Bunz, F. ATM and ATR: components of an integrated circuit. Cell Cycle 6, 414–417 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Niida, H. & Nakanishi, M. DNA damage checkpoints in mammals. Mutagenesis 21, 3–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Goloudina, A. et al. Regulation of human Cdc25A stability by Serine 75 phosphorylation is not sufficient to activate a S phase checkpoint. Cell Cycle 2, 473–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Xiao, Z. et al. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J. Biol. Chem. 278, 21767–21773 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Mailand, N. et al. Rapid destruction of human Cdc25A in response to DNA damage. Science 288, 1425–1429 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Sorensen, C. S. et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell 3, 247–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Matsuoka, S., Huang, M. & Elledge, S. J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282, 1893–1897 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14. 3. 3 protein binding by phosphorylation of CDC25C on Serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Yarden, R. I., Pardo-Reoyo, S., Sgagias, M., Cowan, K. H. & Brody, L. C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nature Genet. 30, 285–289 (2002).

    Article  PubMed  Google Scholar 

  70. Raleigh, J. M. & O'Connell, M. J. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J. Cell Sci. 113, 1727–1736 (2000).

    CAS  PubMed  Google Scholar 

  71. Mikhailov, A., Shinohara, M. & Rieder, C. L. The p38-mediated stress-activated checkpoint. A rapid response system for delaying progression through antephase and entry into mitosis. Cell Cycle 4, 57–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Bulavin, D. V. et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107 (2001). The first study to show the essential role of the p38 kinase in the G2/M checkpoint response to UV radiation, by the phosphorylation of both CDC25B and CDC25C, and by the inhibition of 14-3-3 binding in the case of CDC25B.

    Article  CAS  PubMed  Google Scholar 

  73. Lemaire, M. et al. CDC25B Phosphorylation by p38 and MK-2. Cell Cycle 5, 1649–1653 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Manke, I. A. et al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17, 37–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Reinhardt, H. C., Aslanian, A. S., Lees, J. A. & Yaffe, M. B. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007). A very interesting study in which the p38–MAPKAPK2 pathway was shown to function as an alternative checkpoint response to UV in p53-deficient tumour cells, and to be directly activated by DNA-damaging chemotherapeutic agents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Vugt, M. A., Bras, A. & Medema, R. H. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol. Cell 15, 799–811 (2004). In this study, the authors show that although PLK1 is not an essential kinase for mitotic entry in undamaged cells, it becomes indispensable along with CDC25B, for the recovery of G2/M checkpoint arrest after DNA damage.

    Article  CAS  PubMed  Google Scholar 

  77. Bugler, B. et al. Genotoxic-activated G2-M checkpoint exit is dependent on CDC25B phosphatase expression. Mol. Cancer Ther. 5, 1446–1451 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Bansal, P. & Lazo, J. S. Induction of Cdc25B regulates cell cycle resumption after genotoxic stress. Cancer Res. 67, 3356–3363 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Cangi, M. G. et al. Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. 106, 753–761 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bonin, S., Brunetti, D., Benedetti, E., Gorji, N. & Stanta, G. Expression of cyclin-dependent kinases and CDC25a phosphatase is related with recurrences and survival in women with peri- and post-menopausal breast cancer. Virchows Arch. 448, 539–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Ito, Y. et al. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295–300 (2004).

    Article  PubMed  Google Scholar 

  82. Galaktionov, K. et al. Cdc25 phosphatases as potential human oncogenes. Science 269, 1575–1577 (1995). This study was the first report of overexpression of CDC25B in primary tissue samples from human breast cancer, and also the first to associate this overexpression with a higher tumour grade.

    Article  CAS  PubMed  Google Scholar 

  83. Broggini, M. et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 20, 4835–4840 (2000).

    CAS  PubMed  Google Scholar 

  84. Ngan, E. S., Hashimoto, Y., Ma, Z. Q., Tsai, M. J. & Tsai, S. Y. Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene 22, 734–739 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Ozen, M. & Ittmann, M. Increased expression and activity of CDC25C phosphatase and an alternatively spliced variant in prostate cancer. Clin. Cancer Res. 11, 4701–4706 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Sasaki, H. et al. Expression of the cdc25B gene as a prognosis marker in non-small cell lung cancer. Cancer Lett. 173, 187–192 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. & Mao, L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58, 4082–4085 (1998).

    CAS  PubMed  Google Scholar 

  88. Takemasa, I. et al. Overexpression of CDC25B phosphatase as a novel marker of poor prognosis of human colorectal carcinoma. Cancer Res. 60, 3043–3050 (2000).

    CAS  PubMed  Google Scholar 

  89. Hernandez, S. et al. Differential expression of cdc25 cell-cycle-activating phosphatases in human colorectal carcinoma. Lab. Invest. 81, 465–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Talvinen, K. et al. Biochemical and clinical approaches in evaluating the prognosis of colon cancer. Anticancer Res. 26, 4745–4751 (2006).

    CAS  PubMed  Google Scholar 

  91. Hu, Y. C., Lam, K. Y., Law, S., Wong, J. & Srivastava, G. Identification of differentially expressed genes in esophageal squamous cell carcinoma (ESCC) by cDNA expression array: overexpression of Fra-1, Neogenin, Id-1, and CDC25B genes in ESCC. Clin. Cancer Res. 7, 2213–2221 (2001).

    CAS  PubMed  Google Scholar 

  92. Miyata, H. et al. CDC25B and p53 are independently implicated in radiation sensitivity for human esophageal cancers. Clin. Cancer Res. 6, 4859–4865 (2000).

    CAS  PubMed  Google Scholar 

  93. Nishioka, K. et al. Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus. Br. J. Cancer 85, 412–421 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kishi, K. et al. Prediction of the response to chemoradiation and prognosis in oesophageal squamous cancer. Br. J. Surg. 89, 597–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Sunada, F., Itabashi, M., Ohkura, H. & Okumura, T. p53 negativity, CDC25B positivity, and metallothionein negativity are predictors of a response of esophageal squamous cell carcinoma to chemoradiotherapy. World J. Gastroenterol. 11, 5696–5700 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ito, Y. et al. Cdc25A and cdc25B expression in malignant lymphoma of the thyroid: correlation with histological subtypes and cell proliferation. Int. J. Mol. Med. 13, 431–435 (2004).

    CAS  PubMed  Google Scholar 

  97. Ito, Y. et al. Expression of cdc25A and cdc25B proteins in thyroid neoplasms. Br. J. Cancer 86, 1909–1913 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ito, Y. et al. Expression of cdc25B and cdc25A in medullary thyroid carcinoma: cdc25B expression level predicts a poor prognosis. Cancer Lett. 229, 291–297 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Fraczek, M., Wozniak, Z., Ramsey, D. & Krecicki, T. Expression patterns of cyclin E, cyclin A and CDC25 phosphatases in laryngeal carcinogenesis. Eur. Arch. Otorhinolaryngol. 2007 (doi:10-1007/s00405-007-0276-2)

  100. Xu, X. et al. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin. Cancer Res. 9, 1764–1772 (2003).

    CAS  PubMed  Google Scholar 

  101. Kudo, Y. et al. Overexpression of cyclin-dependent kinase activating CDC25B phosphatase in human gastric carcinomas. Jpn J. Cancer Res. 88, 947–952 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, J. et al. Expression and functional significance of CDC25B in human pancreatic ductal adenocarcinoma. Oncogene 23, 71–81 (2004).

    Article  PubMed  CAS  Google Scholar 

  103. Wu, W. et al. Coordinate expression of Cdc25B and ER-α is frequent in low-grade endometrioid endometrial carcinoma but uncommon in high-grade endometrioid and nonendometrioid carcinomas. Cancer Res. 63, 6195–6199 (2003).

    CAS  PubMed  Google Scholar 

  104. Tsuda, H., Hashiguchi, Y., Inoue, T. & Yamamoto, K. Alteration of G2 cell cycle regulators occurs during carcinogenesis of the endometrium. Oncology 65, 159–166 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Gasparotto, D. et al. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 57, 2366–2368 (1997).

    CAS  PubMed  Google Scholar 

  106. Sato, Y. et al. Expression of the cdc25B mRNA correlated with that of N-myc in neuroblastoma. Jpn J. Clin. Oncol. 31, 428–431 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Nakabayashi, H., Hara, M. & Shimizu, K. Prognostic significance of CDC25B expression in gliomas. J. Clin. Pathol. 59, 725–728 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hernandez, S. et al. CDC25 cell cycle-activating phosphatases and c-myc expresion in human non-hodgkin's lymphomas. Cancer Res. 58, 1762–1767 (1998).

    CAS  PubMed  Google Scholar 

  109. Hernandez, S. et al. cdc25a and the splicing variant cdc25b2, but not cdc25B1, -B3 or-C, are over-expressed in aggressive human non-Hodgkin's lymphomas. Int. J. Cancer 89, 148–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Moreira, G. Jr. et al. Reciprocal CDC25A and p27 expression in B-cell non Hodgkin lymphomas. Diagn. Mol. Pathol. 12, 128–132 (2003).

    Article  Google Scholar 

  111. Aref, S. et al. c-Myc oncogene and Cdc25A cell activating phosphatase expression in non-Hodgkin's lymphoma. Hematology 8, 183–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Nishioka, K. et al. Clinical significance of CDC25A and CDC25B expression in squamous cell carcinomas of the oesophagus. Br. J. Cancer 85, 412–421 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Galaktionov, K., Chen, X. C. & Beach, D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382, 511–517 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Ben-Yosef, T., Yanuka, O., Halle, D. & Benvenisty, N. Involvement of Myc targets in c-myc and N-myc induced human tumors. Oncogene 17, 165–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Vigo, E. et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol. Cell Biol. 19, 6379–6395 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, L. et al. E2F-Rb complexes assemble and inhibit cdc25A transcription in cervical carcinoma cells following repression of human papillomavirus oncogene expression. Mol. Cell Biol. 20, 7059–7067 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spitkovsky, D., Jansen-Dürr, P., Karsenti, E. & Hoffmann, I. S-phase induction by adenovirus E1A requires activation of cdc25A tyrosine phosphatase. Oncogene 12, 2549–2554 (1996).

    CAS  PubMed  Google Scholar 

  118. Loffler, H. et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22, 8063–8071 (2003).

    Article  PubMed  CAS  Google Scholar 

  119. Alderton, G. K. et al. Regulation of mitotic entry by microcephalin and its overlap with ATR signalling. Nature Cell Biol. 8, 725–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Gerstein, A. V. et al. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34, 9–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. He, N. et al. Regulation of lung cancer cell growth and invasiveness by β-TRCP. Mol. Carcinog. 42, 18–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, C. J. et al. Somatic mutations of the β-TrCP gene in gastric cancer. Apmis 115, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Kim, S. O. et al. Differential expression of Csk homologous kinase (CHK) in normal brain and brain tumors. Cancer 101, 1018–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Tort, F. et al. Checkpoint kinase 1 (CHK1) protein and mRNA expression is downregulated in aggressive variants of human lymphoid neoplasms. Leukemia 19, 112–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Ray, D. et al. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res. 67, 984–991 (2007). In this study, the authors show that although transgenic expression of CDC25A alone is not sufficient to induce spontaneous tumour growth in mice, CDC25A overexpression generates genomic instability and cooperates with v-Ha- ras or c- neu oncogenes in murine mammary tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  127. Ma, Z. Q., Chua, S. S., DeMayo, F. J. & Tsai, S. Y. Induction of mammary gland hyperplasia in transgenic mice over- expressing human cdc25B. Oncogene 18, 4564–4576 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Yao, Y. et al. Increased susceptibility to carcinogen-induced mammary tumors in MMTV- Cdc25B transgenic mice. Oncogene 18, 5159–5166 (1999). References 127 and 128 discuss the effect of CDC25B overexpression in inducing mammary tumour growth. The expression of CDC25B alone promotes proliferation and hyperplasia but requires the presence of a carcinogen to stimulate tumour growth.

    Article  CAS  PubMed  Google Scholar 

  129. Karlsson, C., Katich, S., Hagting, A., Hoffmann, I. & Pines, J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J. Cell Biol. 146, 573–584 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sexl, V. et al. A rate limiting function of cdc25A for S phase entry inversely correlates with tyrosine dephosphorylation of Cdk2. Oncogene 18, 573–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. & Lukas, J. The ATM-Chk2-CDC25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842–847. (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Senderowicz, A. M. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol. 16, 670–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Senderowicz, A. M. Inhibitors of cyclin-dependent kinase modulators for cancer therapy. Prog. Drug Res. 63, 183–206 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Byrd, J. C. et al. Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109, 399–404 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Benson, C. et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br. J. Cancer 96, 29–37 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Prevost, G. P. et al. in Progress in Cell Cycle Research (eds Meijer, L., Jézéquel, A. & Roberge, M.) 225–234 (Life in progress, Roscoff, France, 2003).

    Google Scholar 

  137. Lazo, J. S. et al. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44, 4042–4049 (2001). This study shows how the screening of a compound library coupled with experimental and computational approaches can result in the identification of a potent and specific CDC25 inhibitor.

    Article  CAS  PubMed  Google Scholar 

  138. Brisson, M. et al. Discovery and characterization of novel small molecule inhibitors of human Cdc25B dual specificity phosphatase. Mol. Pharmacol. 66, 824–833 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Cao, S., Foster, C., Brisson, M., Lazo, J. S. & Kingston, D. G. Halenaquinone and xestoquinone derivatives, inhibitors of Cdc25B phosphatase from a Xestospongia sp. Bioorg. Med. Chem. 13, 999–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Brezak, M. C. et al. Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol. Cancer Ther. 4, 1378–1387 (2005). An important study reporting the identification of BN82685, a quinone-based potent CDC25 inhibitor. The fact that this compound inhibits the growth of xenografted human pancreatic tumours when orally administered highlights the value of CDC25 phosphatases as targets for anticancer therapeutics.

    Article  CAS  PubMed  Google Scholar 

  141. Galcera, M. O., Bigg, D., Prevost, G. & Sidhu, A. CDC25 phosphatases inhibitors. WO 2006/067311 (2006).

  142. Kar, S., Wang, M., Ham, S. W. & Carr, B. I. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK. Cancer Biol. Ther. 5, 1340–1347 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Blanchard, J. L., Epstein, D. M., Boisclair, M. D., Rudolph, J. & Pal, K. Dysidiolide and related γ-hydroxy butenolide compounds as inhibitors of the protein tyrosine phosphatase, CDC25. Bioorg. Med. Chem. Lett. 9, 2537–2538 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Ham, S. W. et al. Naphthoquinone analogs as inactivators of cdc25 phosphatase. Bioorg. Med. Chem. Lett. 8, 2507–2510 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Wrobel, J. et al. PTP1B inhibition and antihyperglycemic activity in the ob/ob mouse model of novel 11-arylbenzo[b]naphtho[2, 3-d]furans and 11-arylbenzo[b]naphtho[2, 3-d]thiophenes. J. Med. Chem. 42, 3199–3202 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Tamura, K. et al. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer Res. 60, 1317–1325 (2000).

    CAS  PubMed  Google Scholar 

  147. Sohn, J. & Rudolph, J. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction. Biochemistry 42, 10060–10070 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Kar, S., Wang, M., Ham, S. W. & Carr, B. I. Fluorinated Cpd 5, a pure arylating K-vitamin derivative, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating MAPK. Biochem. Pharmacol. 72, 1217–1227 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Mondesert, O. et al. A fission yeast strain expressing human CDC25A phosphatase: a tool for selectivity studies of pharmacological inhibitors of CDC25. Curr. Genet. 45, 283–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Brezak, M. C. et al. A novel synthetic inhibitor of CDC25 phosphatases: BN82002. Cancer Res. 64, 3320–3325 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Kar, S., Wang, M., Yao, W., Michejda, C. J. & Carr, B. I. PM-20, a novel inhibitor of Cdc25A, induces extra-cellular signal-regulated kinase 1/2 phosphorylation and inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol. Cancer Ther. 5, 1511–1519 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nature Rev. Cancer 7, 202–211 (2007).

    Article  CAS  Google Scholar 

  153. Cazales, M. et al. Pharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and mitotic spindle assembly. Mol. Cancer Ther. 6, 318–325 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Cheon, H. G., Kim, S. M., Yang, S. D., Ha, J. D. & Choi, J. K. Discovery of a novel protein tyrosine phosphatase-1B inhibitor, KR61639: potential development as an antihyperglycemic agent. Eur. J. Pharmacol. 485, 333–339 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Collins, I. & Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006).

    Article  CAS  Google Scholar 

  156. Chen, Z. et al. Selective Chk1 inhibitors differentially sensitize p53-deficient cancer cells to cancer therapeutics. Int. J. Cancer 119, 2784–2794 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Syljuasen, R. G. et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol. Cell Biol. 25, 3553–3562 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Matthews, D. J. et al. Pharmacological abrogation of S-phase checkpoint enhances the anti-tumor activity of gemcitabine in vivo. Cell Cycle 6, 104–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  159. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 687–688 (2006).

    Article  CAS  Google Scholar 

  160. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Retief, J. D. Phylogenetic analysis using PHYLIP. Methods Mol. Biol. 132, 243–258 (2000).

    CAS  PubMed  Google Scholar 

  162. van Vugt, M. A., Bras, A. & Medema, R. H. Restarting the cell cycle when the checkpoint comes to a halt. Cancer Res. 65, 7037–7040 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Broggini, M. et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 20, 4835–4840. (2000).

    CAS  PubMed  Google Scholar 

  164. Kieffer, I., Lorenzo, C., Dozier, C. & Ducommun, B. Differential mitotic degradation of the CDC25B variants. Oncogene 2007 (in the press).

Download references

Acknowledgements

We gratefully acknowledge J. Hyams (Massey University, NZ) and J. Lazo (Pittsburgh University, USA) for critical reading of this review. We thank G. Prevost and the IPSEN group for communication on the IRC083864 compound before publication. Work in our laboratory is supported by the CNRS (Centre National de la Recherche Sicientifique), the University of Toulouse and la Ligue Nationale Contre le Cancer (Equipe Labelisée 2005). R.B. is the recipient of a C.J. Martin Fellowship (National Health and Medical Research Council; Australia) and V.L. is a post-doctoral fellow with la Ligue Nationale Contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ducommun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Dual-specificity protein phosphatase

A phosphoprotein phosphatase that is able to hydrolyse the phosphate ester bond on both a tyrosine and a threonine or serine residue on the same protein.

Cyclin-dependent kinase

In association with their cyclin regulatory subunits, CDKs control progression through key cell cycle transitions.

Checkpoint

Checkpoint mechanisms control the order and timing of crucial cell-cycle transitions and ensure that crucial requirements (DNA integrity, chromosome partitioning) are met, for the maintenance of the genome.

Radioresistance

A property of cells that are intrinsically resistant to usual doses of ionizing radiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boutros, R., Lobjois, V. & Ducommun, B. CDC25 phosphatases in cancer cells: key players? Good targets?. Nat Rev Cancer 7, 495–507 (2007). https://doi.org/10.1038/nrc2169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing