Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer phenomics: RET and PTEN as illustrative models

Key Points

  • Cancer phenomics refers to the systematic and meticulous collection, objective documentation and cataloguing of phenotypic data at many levels, including clinical, molecular and cellular phenotype. Compared with other genes that predispose to the development of cancer, robust phenomic data exists for rearranged during transfection (RET) and phosphatase and tensin homologue (PTEN).

  • Germline PTEN and RET mutations predispose to the cancer-associated syndromes Cowden syndrome (CS) and multiple endocrine neoplasia type 2 (MEN 2), respectively. Both genes also predispose to developmental disorders with seemingly disparate phenotypes.

  • CS predisposes to breast, thyroid and endometrial cancer, whereas MEN 2 predisposes to medullary thyroid cancer (MTC), phaeochromocytoma and hyperparathyroidism.

  • Phenomics has shown that germline RET and PTEN mutations are present in a subset of patients with apparently sporadic cancer involving neoplasias that are components of MEN 2 and CS, respectively. Identifying these mutations will have important implications for personalized genetic health care.

  • Meticulous characterization of RET phenomics at the clinical and biochemical levels has resulted in individualized patient management with respect to cancer surveillance and prophylactic surgery in MEN 2. In addition, phenomics offers valuable insight into the aetiology of the variable expression of features seen in MEN 2.

  • Through phenomic-based research, the spectrum of phenotypes associated with germline PTEN mutations is continually evolving, and these are collectively termed the PTEN hamartoma tumour syndromes (PHTS). Such research has also led to the continual refinement of the diagnostic criteria for CS.

  • The current opinion is that all patients with PHTS, irrespective of phenotype, follow the cancer surveillance guidelines recommended for CS. These guidelines are updated annually by the US National Comprehensive Cancer Network.

  • Molecular phenomic research has explored new mechanisms of PTEN dysfunction, including splice-site variation and the localization of PTEN to different cellular compartments.

  • Through an understanding of the PTEN–AKT pathway, and its cross-talk with other pathways important in tumorigenesis, the use of targeted therapies seems promising for the treatment of PHTS. However, these agents must be used with caution, as their effects on the development and homeostasis of normal tissue deserves careful consideration.

Abstract

Cancer phenomics, the systematic acquisition and objective documentation of host and/or somatic cancer phenotypic data at many levels, is a young field compared with other molecular-based 'omics'. Two relatively advanced phenomic paradigms are associated with phosphatase and tensin homologue (PTEN) and rearranged during transfection (RET), genes that are associated with cancer predisposition syndromes in addition to developmental disorders. The phenomic characterization of PTEN and RET underscores the importance of incorporating robust phenomics into the host 'omic' profile, and shows that the evolution of phenomics will be crucial to the advancement of personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTEN and RET signalling pathways.
Figure 2: Schematic representation of RET and codons affected by mutations in MEN 2.
Figure 3: Schematic representation of reported germline PTEN mutations in PHTS.

Similar content being viewed by others

References

  1. Gregory, S. G. et al. The DNA sequence and biological annotation of human chromosome 1. Nature 441, 315–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Habel, L. A. et al. A population-based study of tumor gene expression and risk of breast cancer death among lymph node-negative patients. Breast Cancer Res. 8, R25 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Waite, K. A. & Eng, C. Protean PTEN: form and function. Am. J. Hum. Genet. 70, B29–B44 (2002).

    Article  Google Scholar 

  5. Schimke, R. N. Genetic aspects of multiple endocrine neoplasia. Annu. Rev. Med. 35, 25–31 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Eng, C. Will the real Cowden syndrome please stand up: revised diagnostic criteria. J. Med. Genet. 37, 828–830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maher, E. R. et al. Phenotypic expression in von Hippel-Lindau disease: correlations with germline VHL mutations. J. Med. Genet. 81, 328–332 (1996).

    Article  Google Scholar 

  8. Lynch, H. T. & Lynch, J. F. What the physician needs to know about Lynch syndrome: an update. Oncology (Williston Park) 19, 455–463 (2005).

    Google Scholar 

  9. Mangold, E. et al. A genotype-phenotype correlation in HNPCC: strong predominance of msh2 mutations in 41 patients with Muir-Torre syndrome. J. Med. Genet. 41, 567–572 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wijnen, J. et al. Familial endometrial cancer in female carriers of MSH6 germline mutations. Nature Genet. 23, 142–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Peltomaki, P. Lynch syndrome genes. Fam. Cancer 4, 227–232 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. Gryfe, R. & Gallinger, S. Germline PMS2 mutations: one hit or two? Gastroenterology 128, 1506–1509 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Q. et al. Neurofibromatosis type 1 gene as a mutational target in a mismatch repair-deficient cell type. Hum. Genet. 112, 117–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liede, A., Karlan, B. Y. & Narod, S. A. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: a review of the literature. J. Clin. Oncol. 22, 735–742 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Offit, K. et al. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J. Natl Cancer Inst. 95, 1548–1551 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi, M. et al. Cloning and expression of the ret proto-oncogene encoding a receptor tyrosine kinase with two potential transmembrane domains. Oncogene 3, 571–578 (1988).

    CAS  PubMed  Google Scholar 

  19. Nakamura, T., Ishizaka, Y., Nagao, M., Hara, M. & Ishikawa, T. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J. Pathol. 172, 255–260 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Pasini, B. et al. Loss of function effect of RET mutations causing Hirschsprung disease. Nature Genet. 10, 35–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Eng, C. & Mulligan, L. M. Mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2, related sporadic tumours and Hirschsprung diseaes. Hum. Mutat. 9, 97–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Marx, S. J. Molecular genetics of multiple endocrine neoplasia types 1 and 2. Nature Rev. Cancer 5, 367–375 (2005).

    Article  CAS  Google Scholar 

  23. Utiger, R. D. Medullary thyroid carcinoma, genes, and the prevention of cancer. N. Engl. J. Med. 331, 870–871 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Verga, U. et al. Frequent association between MEN 2A and cutaneous lichen amyloidosis. Clin. Endocrinol. (Oxf) 59, 156–161 (2003).

    Article  CAS  Google Scholar 

  25. Evans, D. B., Lee, J. E., Merrell, R. C. & Hickey, R. C. Adrenal medullary disease in multiple endocrine neoplasia type 2. Appropriate management. Endocrinol. Metab. Clin. North Am. 23, 167–176 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Neumann, H. P. et al. Germ-line mutations in nonsyndromic phaeochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Jing, S. et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Asai, N. et al. RET receptor signaling: dysfunction in thyroid cancer and Hirschsprung's disease. Pathol. Int. 56, 164–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Watanabe, T. et al. Characterization of gene expression induced by RET with MEN2A or MEN2B mutation. Am. J. Pathol. 161, 249–256 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mulligan, L. M. et al. Genotype-phenotype correlation in MEN 2: report of the International RET Mutation Consortium. J. Intern. Med. 238, 343–346 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Eng, C. et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2: international RET Mutation Consortium analysis. JAMA 276, 1575–1579 (1996). A large consortium series of MEN2 families enabled genomic–phenomic data to be documented, which serves as the paradigm for clinical cancer genetics practice.

    Article  CAS  PubMed  Google Scholar 

  32. Hofstra, R. M. W. et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 367, 375–376 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Mulligan, L. M. et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nature Genet. 6, 70–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Borrello, M. G. et al. RET activation by germline MEN2A and MEN2B mutations. Oncogene 11, 2419–2427 (1995).

    CAS  PubMed  Google Scholar 

  35. Santoro, M. et al. Activation of RET as a dominant transforming gene by germline mutations of MEN 2A and MEN 2B. Science 267, 381–383 (1995). Together with references 34 and 46, this study described the biochemical mechanism for activating mutations seen in MEN2.

    Article  CAS  PubMed  Google Scholar 

  36. Gimm, O. et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J. Clin. Endocrinol. Metab. 82, 3902–3904 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, D. P., Houghton, C. & Ponder, B. A. J. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene 15, 1213–1217 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domain. Science 241, 42–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Salvatore, D. et al. Increased in vivo phosphorylation of ret tyrosine 1062 is a potential pathogenetic mechanism of multiple endocrine neoplasia type 2B. Cancer Res. 61, 1426–1431 (2001).

    CAS  PubMed  Google Scholar 

  40. Asai, N., Iwashita, T., Matsuyama, M. & Takahashi, M. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol. Cell Biol. 3, 1613–1619 (1995).

    Article  Google Scholar 

  41. Eng, C. RET proto-oncogene in the development of human cancer. J. Clin. Oncol. 17, 380–393 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Eng, C. The RET proto-oncogene in multiple endocrine neoplasia type 2 and Hirschsprung disease. N. Engl. J. Med. 335, 943–951 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Mulligan, L. M. et al. Diverse phenotypes associated with exon 10 mutations of the RET proto-oncogene. Hum. Mol. Genet. 3, 2163–2167 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Borrego, S. et al. Molecular analysis of RET and GDNF genes in a family with multiple endocrine neoplasia type 2A and Hirschsprung diease. J. Clin. Endocrinol. Metab. 83, 3361–3364 (1998).

    CAS  PubMed  Google Scholar 

  45. Attié, T. et al. Diversity of RET proto-oncogene mutations in familial and sporadic Hirschsprung disease. Hum. Mol. Genet. 4, 1381–1386 (1995).

    Article  PubMed  Google Scholar 

  46. Ito, S. et al. Biological properties of Ret with cysteine mutations correlate with multiple endocrine neoplasia type 2A, familial medullary thyroid carcinoma, and Hirchsprung's disease phenotype. Cancer Res. 57, 2870–2872 (1997).

    CAS  PubMed  Google Scholar 

  47. Carlomagno, F. et al. The different RET-activating capability of mutations of cysteine 620 or cysteine 634 correlates with the multiple endocrine neoplasia type 2 disease phenotype. Cancer Res. 57, 391–395 (1997).

    CAS  PubMed  Google Scholar 

  48. Manger, W. M. & Gifford, R. W. Phaeochromocytom in Hypertension: Pathophysiology, Diagnosis and Management (eds Laragh, J. H. & Brenner, B. M.) 2225–2244 (Raven Press, Ltd., New York, 1995).

    Google Scholar 

  49. Neumann, H. P. H. et al. Germ-line mutations in nonsyndromic phaeochromocytoma. N. Engl. J. Med. 346, 1459–1466 (2002). A comprehensive phenomic analysis of a population-based phaeochromocytoma series as related to one of four genes.

    Article  CAS  PubMed  Google Scholar 

  50. Schiavi, F. et al. Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene. JAMA 294, 2057–2063 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Eng, C. PTEN: one gene, many syndromes. Hum. Mutat. 22, 183–198 (2003). A comprehensive review of PTEN.

    Article  CAS  PubMed  Google Scholar 

  52. Li, D. M. & Sun, H. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor β. Cancer Res. 57, 2124–2129 (1997).

    CAS  PubMed  Google Scholar 

  53. Maehama, T. & Dixon, J. E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998). Describes the crucial role of PTEN in the downregulation of the AKT pathway.

    Article  CAS  PubMed  Google Scholar 

  55. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006).

    Article  CAS  Google Scholar 

  56. Gu, J., Tamura, M. & Yamada, K. M. Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J. Cell Biol. 143, 1375–1383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weng, L. P., Brown, J. L. & Eng, C. PTEN coordinates G1 arrest by down regulating cyclin D1 via its protein phosphatase activity and up regulating p27 via its lipid phosphatase activity. Hum. Mol. Gen. 10, 599–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Tamura, M. et al. Inhibition of cell migration, spreading and focal adhesions by tumor supressor PTEN. Science 280, 1614–1617 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Chung, J. H. & Eng, C. Nuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis. Cancer Res. 65, 8096–8100 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Chung, J. H., Ginn-Pease, M. E. & Eng, C. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) has nuclear localization signal-like sequences for nuclear import mediated by major vault protein. Cancer Res. 65, 4108–4116 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Pilarski, R. & Eng, C. Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J. Med. Genet. 41, 323–326 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhou, X. P. et al. Germline inactivation of PTEN and dysregulation of the phosphoinositol-3-kinase/Akt pathway cause human Lhermitte-Duclos disease in adults. Am. J. Hum. Genet. 73, 1191–1198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Starink, T. M. et al. The cowden syndrome: a clinical and genetic study in 21 patients. Clin. Genet. 29, 222–233 (1986).

    Article  CAS  PubMed  Google Scholar 

  64. Longy, M. & Lacombe, D. Cowden disease. Report of a family and review. Ann. Genet. 39, 35–42 (1996).

    CAS  PubMed  Google Scholar 

  65. Marsh, D. J. et al. Mutation spectrum and genotype-phenotype analyses in Cowden disease and Bannayan-Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum. Mol. Genet. 7, 507–515 (1998). Results lead to the evolution of the concept of PHTS and cancer surveilance in all patients with germline PTEN mutations.

    Article  CAS  PubMed  Google Scholar 

  66. Marsh, D. J. et al. Germline PTEN mutations in Cowden syndrome-like families. J. Med. Genet. 35, 881–885 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. DeVivo, I. et al. Novel germline mutations in the PTEN tumour suppressor gene found in women with multiple cancers. J. Med. Genet. 37, 336–341 (2000).

    Article  CAS  Google Scholar 

  68. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997). Showed that PTEN mutations cause Cowden syndrome.

    Article  CAS  PubMed  Google Scholar 

  69. Lynch, E. D. et al. Inherited mutations in PTEN that are associated with breast cancer, cowden disease, and juvenile polyposis. Am. J. Hum. Genet. 61, 1254–1260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nelen, M. R. et al. Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum. Mol. Genet. 6, 1383–1387 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nature Genet. 16, 333–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Gorlin, R. J., Cohen, M. M., Condon, L. M. & Burke, B. A. Bannayan-Riley-Ruvalcaba syndrome. Am. J. Med. Genet. 44, 307–314 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Marsh, D. J. et al. PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum. Mol. Genet. 8, 1461–1472 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Sweet, K. et al. Molecular classification of patients with unexplained hamartomatous and hyperplastic polyposis. JAMA 294, 2465–2473 (2005). Documented germline PTEN mutations in a subset of patients with unexplained polyposis syndromes.

    Article  CAS  PubMed  Google Scholar 

  75. Delnatte, C. et al. Contiguous gene deletion within chromosome arm 10q is associated with juvenile polyposis of infancy, reflecting cooperation between the BMPR1A and PTEN tumor-suppressor genes. Am. J. Hum. Genet. 78, 1066–1074 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Salviati, L. et al. Deletion of PTEN and BMPR1A on chromosome 10q23 is not always associated with juvenile polyposis of infancy. Am. J. Hum. Genet. 79, 593–596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, X. P. et al. Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 73, 404–411 (2003). Showed that promoter mutations and deletions cause a subset of CS and BRRS cases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Agrawal, S. & Eng, C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum. Mol. Genet. 15, 777–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Sarquis, M. S. et al. Distinct expression profiles for PTEN transcript and its splice variants in Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am. J. Hum. Genet. 79, 23–30 (2006). Explored germline splice-site variant-profiles as a new mechanism of PTEN modulation in patients with CS and BRRS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gil, A. et al. Nuclear localization of PTEN by a Ran-dependent mechanism enhances apoptosis: involvement of an N-terminal nuclear localization domain and multiple nuclear exclusion motifs. Mol. Biol. Cell 17, 4002–4013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Liu, J. L. et al. Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol. Cell. Biol. 25, 6211–6224 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ross, A. H., Lachyankar, M. B. & Recht, L. D. PTEN: a newly identified regulator of neuronal differentiation. Neuroscientist 7, 278–281 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Sulis, M. L. & Parsons, R. PTEN: from pathology to biology. Trends Cell Biol. 13, 478–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Marsh, D. J. et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinoma. Clin. Endocrinol. (Oxf) 44, 249–257 (1996).

    Article  CAS  Google Scholar 

  85. Schilling, T. et al. Prognostic value of codon 918 (ATG–>ACG) RET proto-oncogene mutations in sporadic medullary thyroid carcinoma. Int J Cancer 95, 62–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Pierotti, M. A. et al. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells. Genes Chromosomes Cancer 16, 1–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Fugazzola, L. et al. Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. Cancer Res. 55, 5617–5620 (1995).

    CAS  PubMed  Google Scholar 

  88. Basolo, F. et al. Potent mitogenicity of the RET/PTC3 oncogene correlates with its prevalence in tall-cell variant of papillary thyroid carcinoma. Am. J. Pathol. 160, 247–254 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ohgaki, H. et al. Genetic pathways to glioblastoma: a population-based study. Cancer Res. 64, 6892–6899 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Bussaglia, E., del Rio, E., Matias-Guiu, X. & Prat, J. PTEN mutations in endometrial carcinomas: a molecular and clinicopathologic analysis of 38 cases. Hum. Pathol. 31, 312–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Baak, J. P. et al. Lack of PTEN expression in endometrial intraepithelial neoplasia is correlated with cancer progression. Hum. Pathol. 36, 555–561 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. de Groot, J. W., Links, T. P., Plukker, J. T., Lips, C. J. & Hofstra, R. M. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tmors. Endocr. Rev. 5, 535–560 (2006).

    Article  CAS  Google Scholar 

  93. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N. & Walsh, K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101, 660–667 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zdychova, J. & Komers, R. Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol. Res. 54, 1–16 (2005).

    CAS  PubMed  Google Scholar 

  96. Sausville, E. A. et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J. Clin. Oncol. 19, 2319–2333 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Mahner, M. & Kary, M. What exactly are genomes, genotypes and phenotypes? And what about phenomes? J. Theor. Biol. 186, 55–63 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Freimer, N. & Sabatti, C. The human phenome project. Nature Genet. 34, 15–21 (2003). An excellent review of the nascent field of human phenomics.

    Article  CAS  PubMed  Google Scholar 

  99. Fernandez-Ricaud, L. et al. PROPHECY-a database for high-resolution phenomics. Nucleic Acids Res. 33, D369–D373 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Kahraman, A. et al. PhenomicDB: a multi-species genotype/phenotype database for comparative phenomics. Bioinformatics 21, 418–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Singer, E. 'Phenome' project set to pin down subgroups of autism. Nature Med. 11, 583 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Riccardi, V. M. von Recklinghausen neurofibromatosis. N. Engl. J. Med. 305, 1617–1627 (1981).

    Article  CAS  PubMed  Google Scholar 

  104. Bausch, B., Borozdin, W. & Neumann, H. P. H. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and phaeochromocytoma. N. Engl. J. Med. 354, 2729–2731 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Eng, C., Kiuru, M., Fernandez, M. J. & Aaltonen, L. A. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nature Rev. Cancer 3, 193–202 (2003).

    Article  CAS  Google Scholar 

  106. Neumann, H. P. H. et al. Distinct clinical features characterize paraganglioma syndromes associated with SDHB and SDHD mutations. JAMA 292, 943–951 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1992).

    Article  Google Scholar 

  108. Nagy, R., Sweet, K. & Eng, C. Highly penetrant hereditary cancer syndromes. Oncogene 23, 6445–6470 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Eng, C. & Blackstone, M. O. Peutz-Jeghers syndrome. Med. Rounds 1, 165–171 (1988).

    Google Scholar 

  110. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391, 184–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Waite, K. A. & Eng, C. From developmental disorder to heritable cancer: it's all in the BMP/TGF-B family. Nature Rev. Genet. 4, 763–773 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary hemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852–859 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Loffeld, A. et al. Epidermal naevus in Proteus syndrome showing loss of heterozygosity for an inherited PTEN mutation. Br. J. Dermatol. 154, 1194–1198 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Mangas, C. et al. Cowden disease in a family: a clinical and genetic diagnosis. J. Am. Acad. Dermatol. 53, 359–360 (2005).

    Article  PubMed  Google Scholar 

  116. Valle, L., Rodriguez-Lopez, R., Robledo, M., Benitez, J. & Urioste, M. Concurrence of germline mutations in the APC and PTEN genes in a colonic polyposis family member. J. Clin. Oncol. 22, 2252–2253 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Marchese, C. et al. Granular cell tumor in a PHTS patient with a novel germline PTEN mutation. Am. J. Med. Genet. A 120, 286–288 (2003).

    Article  Google Scholar 

  118. Derrey, S. et al. Association between Cowden syndrome and Lhermitte-Duclos disease: report of two cases and review of the literature. Surg. Neurol. 61, 447–454 (2004).

    Article  PubMed  Google Scholar 

  119. Schaffer, J. V., Kamino, H., Witkiewicz, A., McNiff, J. M. & Orlow, S. J. Mucocutaneous neuromas: an underrecognized manifestation of PTEN hamartoma-tumor syndrome. Arch. Dermatol. 142, 625–632 (2006).

    Article  PubMed  Google Scholar 

  120. Bonneau, D. & Longy, M. Mutations of the human PTEN gene. J. Med. Genet. 16, 109–122 (2000).

    CAS  Google Scholar 

  121. Kim, D. K. et al. Analysis of PTEN gene mutations in Korean patients with Cowden syndrome and polyposis syndrome. Dis. Colon Rectum 48, 1714–1722 (2005).

    Article  PubMed  Google Scholar 

  122. Sawada, T. et al. Two novel mutations of PTEN gene in Japanese patients with Cowden syndrome. Am. J. Med. Genet. A 128, 12–14 (2004).

    Article  Google Scholar 

  123. Reifenberger, J. et al. Cowden's disease: clinical and molecular genetic findings in a patient with a novel PTEN germline mutation. Br. J. Dermatol. 148, 1040–1046 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Hendriks, Y. M. et al. Bannayan-Riley-Ruvalcaba syndrome: further delineation of the phenotype and management of PTEN mutation-positive cases. Fam. Cancer 2, 79–85 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.E. is a recipient of the Doris Duke Distinguished Clinical Scientist Award and is supported by grants from the US National Institutes of Health, US National Cancer Institute and American Cancer Society. K.Z. is a Crile Fellow of the Cleveland Clinic, United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charis Eng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute

MTC

pheochromocytoma

OMIM

CS

FA

HNPCC

HSCR

MEN2

FURTHER INFORMATION

Genomic Medicine Institute

National Comprehensive Cancer Network

PROPHECY

PhenomicDB

Glossary

Personalized medicine

The individualized tailoring of diagnostic, prognostic and therapeutic decisions on the basis of an individual, genomic, epigenomic, proteomic and phenomic profile.

Germline mutation

A mutation that is present in every cell of the body; the mutation can be transmitted through the sperm or ova.

Medullary thyroid cancer

A malignancy that develops from the neural-crest-derived C cells of the thyroid. C cells secrete calcitonin, a hormone important in normal calcium homeostasis.

Phaeochromocytoma

A neoplasm of the adrenal gland that often secretes catecholamines, leading to symptoms such as sweating, palpitations and hypertension.

Hyperparathyroidism

Excessive production of the parathyroid hormone, often leading to symptoms related to elevated serum calcium.

Hamartoma

A non-malignant tumour characterized by the proliferation of normal cellular elements, but with disordered architecture.

Compound heterozygous

Refers to the presence of two different minor (disease causing) alleles in a single individual.

Multifocal

Several discrete tumour foci in different locations within the same organ.

Penetrance

The degree to which a genotype is expressed phenotypically. For example, the penetrance of breast cancer in CS patients with PTEN mutations might be as high as 50%.

Prophylactic

An intervention, often surgical, performed to prevent a disease from occurring.

Thyroidectomy

The surgical removal of the thyroid gland.

Haemangioblastomas

The abnormal, but non-malignant, proliferation of blood vessels, usually capillaries, in the CNS.

Pathognomonic

Absolutely diagnostic of, or specific to, a disorder. For example trichilemmomas are pathognomic of CS and their presence, in adequate numbers, enables the clinician to make a definitive diagnosis.

Hyperplastic polyps

Colonic polyps composed of a proliferation of normal cellular elements.

Loss of heterozygosity

Refers to the loss of one allele in a tumour from a locus for which normal tissue is heterozygous.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zbuk, K., Eng, C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7, 35–45 (2007). https://doi.org/10.1038/nrc2037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2037

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing