Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapy-related myeloid neoplasms: when genetics and environment collide

Key Points

  • Therapy-related myeloid neoplasms (t-MN) arise as a late effect of chemotherapy and/or radiation administered for a primary condition, often a malignant disease, solid organ transplant or autoimmune disease.

  • The majority of t-MN have high-risk cytogenetic features, and the prognosis for patients with t-MN is poor, with a 5-year survival of 10%.

  • Germline mutations in genes associated with an inherited predisposition to cancer have been identified in approximately 20% of patients with t-MN.

  • Chemotherapy and/or radiotherapy promotes clonal selection of pre-existing, mutant haematopoietic stem cells in addition to directly inducing leukaemogenic mutations.

  • The somatic mutations in t-MN are indistinguishable from those occurring in de novo acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS).

  • Large chromosomal deletions, such as del(5q) and del(7q), that occur in t-MN do not harbour a single, recessive tumour suppressor gene but instead are part of a contiguous gene syndrome (CGS). Moreover, the genes involved in CGSs on these chromosomes act by haploinsufficiency.

  • An aberrant bone marrow microenvironment directly contributes to the pathogenesis of t-MN.

Abstract

Therapy-related myeloid neoplasms (t-MN) arise as a late effect of chemotherapy and/or radiation administered for a primary condition, typically a malignant disease, solid organ transplant or autoimmune disease. Survival is measured in months, not years, making t-MN one of the most aggressive and lethal cancers. In this Review, we discuss recent developments that reframe our understanding of the genetic and environmental aetiology of t-MN. Emerging data are illuminating who is at highest risk of developing t-MN, why t-MN are chemoresistant and how we may use this information to treat and ultimately prevent this lethal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Risk of therapy-related myeloid neoplasms after chemotherapy in the United States from 1975 to 2008.
Figure 2: Recurrent mutations and cytogenetic abnormalities in therapy-related myeloid neoplasms.
Figure 3: Contiguous gene syndrome regions on chromosomes 5 and 7.
Figure 4: Both intrinsic and extrinsic factors contribute to the development of therapy-related myeloid neoplasms.
Figure 5: Model for the role of clonal selection in the aetiology of high-risk myeloid neoplasms.
Figure 6: A hypothetical approach to preserve healthy haematopoietic stem cells during chemotherapy and/or radiation therapy.

Similar content being viewed by others

References

  1. Singh, Z. N. et al. Therapy-related myelodysplastic syndrome: morphologic subclassification may not be clinically relevant. Am. J. Clin. Patholol. 127, 197–205 (2007).

    Article  Google Scholar 

  2. Wu, S., Powers, S., Zhu, W. & Hannun, Y. A. Substantial contribution of extrinsic risk factors to cancer development. Nature 529, 43–47 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Schrader, K. A. et al. Germline variants in targeted tumor sequencing using matched normal DNA. JAMA Oncology 2, 104–111 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  4. Pritchard, C. C. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N. Engl. J. Med. 375, 443–453 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Wong, T. N. et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518, 552–555 (2015).Largest study of somatic mutations in t-MN that also reported pre-existing TP53 mutations prior to t-MN development.

    Article  CAS  PubMed  Google Scholar 

  7. Ok, C. Y. et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk. Res. 39, 348–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Lindsley, R. C. et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Stoddart, A. et al. Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood 123, 1069–1078 (2014).First in vivo evidence of t-MN as a CGS on chromosome arm 5q.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. McNerney, M. E. et al. CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia. Blood 121, 975–983 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wong, J. C. et al. Functional evidence implicating chromosome 7q22 haploinsufficiency in myelodysplastic syndrome pathogenesis. eLife http://dx.doi.org/10.7554/eLife.07839 (2015).

  12. Raaijmakers, M. H. Myelodysplastic syndromes: revisiting the role of the bone marrow microenvironment in disease pathogenesis. Int. J. Hematol. 95, 17–25 (2012).

    Article  PubMed  Google Scholar 

  13. Agarwal, P. & Bhatia, R. Influence of bone marrow microenvironment on leukemic stem cells: breaking up an intimate relationship. Adv. Cancer Res. 127, 227–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Anthony, B. A. & Link, D. C. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 35, 32–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Korn, C. & Mendez-Ferrer, S. Myeloid malignancies and the microenvironment. Blood 129, 811–822 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. de Moor, J. S. et al. Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol. Biomarkers Prev. 22, 561–570 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Rowland, J. H. & Bellizzi, K. M. Cancer survivorship issues: life after treatment & implications for an aging population. Clin. J. Oncol. 32, 2662–2668 (2014).

    Article  Google Scholar 

  18. De Roos, A. J. et al. Incidence of myelodysplastic syndromes within a nonprofit healthcare system in western Washington state, 2005–2006. Am. J. Hematol. 85, 765–770 (2010).

    Article  PubMed  Google Scholar 

  19. Hulegardh, E. et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish Acute Leukemia Registry. Am. J. Hematol. 90, 208–214 (2015).

    Article  PubMed  Google Scholar 

  20. Fianchi, L. et al. Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am. J. Hematol. 90, E80–E85 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Morton, L. M. et al. Evolving risk of therapy-related acute myeloid leukemia following cancer chemotherapy among adults in the United States, 1975–2008. Blood 121, 2996–3004 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Morton, L. M. et al. Risk of myeloid neoplasms after solid organ transplantation. Leukemia 28, 2317–2323 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Radivoyevitch, T. et al. Defining AML and MDS second cancer risk dynamics after diagnoses of first cancers treated or not with radiation. Leukemia 30, 285–294 (2016).Provides a thorough analysis of environmental risk factors for t-MN.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, S. M. et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood 102, 43–52 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Wolff, A. C. et al. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J. Clin. Oncol. 33, 340–348 (2015).

    Article  PubMed  Google Scholar 

  26. Eichenauer, D. A. et al. Therapy-related acute myeloid leukemia and myelodysplastic syndromes in patients with Hodgkin lymphoma: a report from the German Hodgkin Study Group. Blood 123, 1658–1664 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Armitage, J. O. et al. Treatment-related myelodysplasia and acute leukemia in non-Hodgkin's lymphoma patients. J. Clin. Oncol. 21, 897–906 (2003).

    Article  PubMed  Google Scholar 

  28. Smith, M. R. et al. Incidence of therapy-related myeloid neoplasia after initial therapy for chronic lymphocytic leukemia with fludarabine-cyclophosphamide versus fludarabine: long-term follow-up of US Intergroup Study E2997. Blood 118, 3525–3527 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pemmaraju, N. et al. Characteristics and outcomes of patients with multiple myeloma who develop therapy-related myelodysplastic syndrome, chronic myelomonocytic leukemia, or acute myeloid leukemia. Clin. Lymphoma Myeloma Leuk. 15, 110–114 (2015).

    Article  PubMed  Google Scholar 

  30. Bhatia, S. et al. Therapy-related myelodysplasia and acute myeloid leukemia after Ewing sarcoma and primitive neuroectodermal tumor of bone: a report from the Children's Oncology Group. Blood 109, 46–51 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ballinger, M. L. et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 17, 1261–1271 (2016).

    Article  PubMed  Google Scholar 

  32. Bhatia, S. Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors. Cancer 121, 648–663 (2015).

    Article  PubMed  Google Scholar 

  33. Churpek, J. E. et al. Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia. Cancer 122, 304–311 (2016).This study demonstrates a high frequency of mutations in cancer predisposition genes in patients who developed t-MN following treatment for breast cancer.

    Article  CAS  PubMed  Google Scholar 

  34. Schulz, E. et al. Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms. J. Med. Genet. 49, 422–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Voso, M. T. et al. Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer J. 5, e323 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Felix, C. A. et al. The p53 gene in pediatric therapy-related leukemia and myelodysplasia. Blood 87, 4376–4381 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Felix, C. A. et al. Association of germline p53 mutation with MLL segmental jumping translocation in treatment-related leukemia. Blood 91, 4451–4456 (1998).

    CAS  PubMed  Google Scholar 

  38. Link, D. C. et al. Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA 305, 1568–1576 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Momota, H. et al. Acute lymphoblastic leukemia after temozolomide treatment for anaplastic astrocytoma in a child with a germline TP53 mutation. Pediatr. Blood Cancer 55, 577–579 (2010).

    Article  PubMed  Google Scholar 

  40. Vasanthakumar, A. et al. Brca1 deficiency causes bone marrow failure and spontaneous hematologic malignancies in mice. Blood 127, 310–313 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Ramus, S. J. et al. Increased frequency of TP53 mutations in BRCA1 and BRCA2 ovarian tumours. Genes Chromosomes Cancer 25, 91–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Schuyer, M. & Berns, E. M. Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol. Cell. Endocrinol. 155, 143–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Jacoby, M. A. et al. The DNA double-strand break response is abnormal in myeloblasts from patients with therapy-related acute myeloid leukemia. Leukemia 28, 1242–1251 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Maris, J. M. et al. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 79, 1438–1446 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Chao, R. C. et al. Therapy-induced malignant neoplasms in Nf1 mutant mice. Cancer Cell 8, 337–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Choi, G. et al. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res. 72, 6425–6434 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Greene, M. H. et al. Melphalan may be a more potent leukemogen than cyclophosphamide. Ann. Intern. Med. 105, 360–367 (1986).

    Article  CAS  PubMed  Google Scholar 

  48. Curtis, R. E. et al. Risk of leukemia after chemotherapy and radiation treatment for breast cancer. N. Engl. J. Med. 326, 1745–1751 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Travis, L. B. et al. Risk of leukemia after platinum-based chemotherapy for ovarian cancer. N. Engl. J. Med. 340, 351–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Travis, L. B. et al. Treatment-associated leukemia following testicular cancer. J. Natl Cancer Inst. 92, 1165–1171 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  52. Offman, J. et al. Defective DNA mismatch repair in acute myeloid leukemia/myelodysplastic syndrome after organ transplantation. Blood 104, 822–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Waterman, J. et al. Fludarabine as a risk factor for poor stem cell harvest, treatment-related MDS and AML in follicular lymphoma patients after autologous hematopoietic cell transplantation. Bone Marrow Transplant. 47, 488–493 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, G. et al. FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin. Cancer Res. 21, 4257–4261 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Lange, R. D., Moloney, W. C. & Yamawaki, T. Leukemia in atomic bomb survivors. I. General observations. Blood 9, 574–585 (1954).

    Article  CAS  PubMed  Google Scholar 

  56. Travis, L. B. et al. Second malignant neoplasms and cardiovascular disease following radiotherapy. J. Natl Cancer Inst. 104, 357–370 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Nardi, V. et al. Acute myeloid leukemia and myelodysplastic syndromes after radiation therapy are similar to de novo disease and differ from other therapy-related myeloid neoplasms. J. Clin. Oncol. 30, 2340–2347 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  58. Mukherjee, S. et al. Risk for developing myelodysplastic syndromes in prostate cancer patients definitively treated with radiation. J. Natl. Cancer Inst. 106, djt462 (2014).

    Article  PubMed  Google Scholar 

  59. Bello, C. et al. Outcomes after induction chemotherapy in patients with acute myeloid leukemia arising from myelodysplastic syndrome. Cancer 117, 1463–1469 (2011).

    Article  PubMed  Google Scholar 

  60. Appelbaum, F. R. et al. Age and acute myeloid leukemia. Blood 107, 3481–3485 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Lai, F. et al. Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 71, 235–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Le Beau, M. M. et al. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl Acad. Sci. USA 90, 5484–5488 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Le Beau, M. M. et al. Cytogenetic and molecular delineation of a region of chromosome 7 commonly deleted in malignant myeloid diseases. Blood 88, 1930–1935 (1996).

    CAS  PubMed  Google Scholar 

  65. Boultwood, J. et al. Narrowing and genomic annotation of the commonly deleted region of the 5q- syndrome. Blood 99, 4638–4641 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Jerez, A. et al. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J. Clin. Oncol. 30, 1343–1349 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  67. Wang, J., Fernald, A. A., Anastasi, J., Le Beau, M. M. & Qian, Z. Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood 115, 3481–3488 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Ebert, B. L. et al. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Starczynowski, D. T. et al. Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Nat. Med. 16, 49–58 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Min, I. M. et al. The transcription factor EGR1 controls both the proliferation and localization of hematopoietic stem cells. Cell Stem Cell 2, 380–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Schneider, R. K. et al. Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. Cancer Cell 26, 509–520 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kumar, M. S. et al. Coordinate loss of a microRNA and protein-coding gene cooperate in the pathogenesis of 5q- syndrome. Blood 118, 4666–4673 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Stoddart, A., Nakitandwe, J., Chen, S. C., Downing, J. R. & Le Beau, M. M. Haploinsufficient loss of multiple 5q genes may fine-tune Wnt signaling in del(5q) therapy-related myeloid neoplasms. Blood 126, 2899–2901 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Schmickel, R. D. Contiguous gene syndromes: a component of recognizable syndromes. J. Pediatr. 109, 231–241 (1986).

    Article  CAS  PubMed  Google Scholar 

  75. Liu, Y. et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms. Nature 531, 471–475 (2016).Demonstration of a CGS on chromosome arm 17p.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Parker, H. et al. 13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia. Leukemia 25, 489–497 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Tseng, Y. Y. et al. PVT1 dependence in cancer with MYC copy-number increase. Nature 512, 82–86 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Solimini, N. L. et al. Recurrent hemizygous deletions in cancers may optimize proliferative potential. Science 337, 104–109 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wong, C. C. et al. Inactivating CUX1 mutations promote tumorigenesis. Nat. Genet. 46, 33–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Hosono, N. et al. Recurrent genetic defects on chromosome 7q in myeloid neoplasms. Leukemia 28, 1348–1351 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, C. et al. MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia. Cancer Cell 25, 652–665 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Nagamachi, A. et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell 24, 305–317 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, D. H. et al. Ataxia-pancytopenia syndrome Is caused by missense mutations in SAMD9L. Am. J. Hum. Genet. 98, 1146–1158 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Minelli, A. et al. The isochromosome i(7)(q10) carrying c.258 + 2t>c mutation of the SBDS gene does not promote development of myeloid malignancies in patients with Shwachman syndrome. Leukemia 23, 708–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Narumi, S. et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat. Genet. 48, 792–797 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. McNerney, M. E. et al. The spectrum of somatic mutations in high-risk acute myeloid leukaemia with −7/del(7q). Br. J. Haematol. 166, 550–556 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Hunter, C. et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 66, 3987–3991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mistry, A. R. et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N. Engl. J. Med. 352, 1529–1538 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kondo, N., Takahashi, A., Ono, K. & Ohnishi, T. DNA damage induced by alkylating agents and repair pathways. J. Nucleic Acids 2010, 543531 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Ok, C. Y. et al. TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J. Hematol. Oncol. 8, 45 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Christiansen, D. H., Andersen, M. K. & Pedersen-Bjergaard, J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia & acute myeloid leukemia after exposure to alkylating agents & significantly associated with deletion or loss of 5q, a complex karyotype and a poor prognosis. J. Clin. Oncol. 19, 1405–1413 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Side, L. E. et al. RAS, FLT3, and TP53 mutations in therapy-related myeloid malignancies with abnormalities of chromosomes 5 and 7. Genes Chromosomes Cancer 39, 217–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Schulz, E. et al. Preexisting TP53 mutation in therapy-related acute myeloid leukemia. Ann. Hematol. 94, 527–529 (2015).

    Article  PubMed  Google Scholar 

  96. Adem, V. et al. The complete mutatome and clonal architecture of del(5q) [Abstract 608]. (American Society of Hematology Annual Meeting, 2015).

  97. Woll, P. S. et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell 25, 794–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Dumitriu, B. et al. Telomere attrition and candidate gene mutations preceding monosomy 7 in aplastic anemia. Blood 125, 706–709 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Cachia, P. G. et al. Clonal haemopoiesis following cytotoxic therapy for lymphoma. Leukemia 7, 795–800 (1993).

    CAS  PubMed  Google Scholar 

  100. Ruark, E. et al. Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer. Nature 493, 406–410 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Swisher, E. M. et al. Somatic mosaic mutations in PPM1D and TP53 in the blood of women with ovarian carcinoma. JAMA Oncology 2, 370–372 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  102. Pharoah, P. D. et al. PPM1D mosaic truncating variants in ovarian cancer cases may be treatment-related somatic mutations. J. Natl. Cancer Inst. 108, djv347 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  103. Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Rodriguez-Santiago, B. et al. Mosaic uniparental disomies and aneuploidies as large structural variants of the human genome. Am. J. Hum. Genet. 87, 129–138 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Forsberg, L. A. et al. Age-related somatic structural changes in the nuclear genome of human blood cells. Am. J. Hum. Genet. 90, 217–228 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Jacobs, K. B. et al. Detectable clonal mosaicism and its relationship to aging and cancer. Nat. Genet. 44, 651–658 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Laurie, C. C. et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat. Genet. 44, 642–650 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Machiela, M. J. et al. Characterization of large structural genetic mosaicism in human autosomes. Am. J. Hum. Genet. 96, 487–497 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Schick, U. M. et al. Confirmation of the reported association of clonal chromosomal mosaicism with an increased risk of incident hematologic cancer. PLoS ONE 8, e59823 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  112. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 20, 1472–1478 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. McKerrell, T. et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 10, 1239–1245 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Rossi, L. et al. Less is more: unveiling the functional core of hematopoietic stem cells through knockout mice. Cell Stem Cell 11, 302–317 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Challen, G. A. et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat. Genet. 44, 23–31 (2012).

    Article  CAS  Google Scholar 

  118. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  120. Takahashi, K. et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 18, 100–111 (2017).

    Article  PubMed  Google Scholar 

  121. Gillis, N. K. et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study. Lancet Oncol. 18, 112–121 (2017).

    Article  PubMed  Google Scholar 

  122. Gibson, C. J. et al. Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma. J. Clin. Oncol. 35, 1598–1605 (2017).References 120–122 demonstrate CHIP as a potential biomarker for t-MN.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  123. Yoshizato, T. et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N. Engl. J. Med. 373, 35–47 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Babushok, D. V. et al. Emergence of clonal hematopoiesis in the majority of patients with acquired aplastic anemia. Cancer Genet. 208, 115–128 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Maciejewski, J. P., Risitano, A., Sloand, E. M., Nunez, O. & Young, N. S. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood 99, 3129–3135 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Kfoury, Y. & Scadden, D. T. Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16, 239–253 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Ferrer, R. A. et al. Mesenchymal stromal cells from patients with myelodyplastic syndrome display distinct functional alterations that are modulated by lenalidomide. Haematologica 98, 1677–1685 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Medyouf, H. et al. Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell 14, 824–837 (2014).This study showed that patient-derived MSCs promote MDS stem cell growth in mouse xenografts.

    Article  CAS  PubMed  Google Scholar 

  129. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Stoddart, A. et al. Cell intrinsic and extrinsic factors synergize in mice with haploinsufficiency for Tp53, and two human del(5q) genes, Egr1 and Apc. Blood 123, 228–238 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Fleming, H. E. et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2, 274–283 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Wang, Y. et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science 327, 1650–1653 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Lane, S. W. et al. The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 115, 3489–3497 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Falconi, G. et al. Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp. Hematol. 44, 75–83e71-74 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Zambetti, N. A. et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts disease evolution in human pre-leukemia. Cell Stem Cell 19, 613–627 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Link, D. C. & Walter, M. J. 'CHIP'ping away at clonal hematopoiesis. Leukemia 30, 1633–1635 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Granfeldt Ostgard, L. S. et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J. Clin. Oncol. 33, 3641–3649 (2015).

    Article  PubMed  Google Scholar 

  139. Borthakur, G. et al. Survival is poorer in patients with secondary core-binding factor acute myelogenous leukemia compared with de novo core-binding factor leukemia. Cancer 115, 3217–3221 (2009).

    Article  PubMed  Google Scholar 

  140. Kayser, S. et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 117, 2137–2145 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Finke, J. et al. Long-term follow-up of therapy-related myelodysplasia and AML patients treated with allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 51, 771–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  142. Bejar, R. et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J. Clin. Oncol. 32, 2691–2698 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  143. Welch, J. S. et al. TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N. Engl. J. Med. 375, 2023–2036 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Kirkizlar, E. et al. Detection of clonal and subclonal copy-number variants in cell-free DNA from patients with breast cancer using a massively multiplexed PCR methodology. Transl Oncol. 8, 407–416 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  145. Rojek, K. et al. Identifying inherited and acquired genetic factors involved in poor stem cell mobilization and donor-derived malignancy. Biol. Blood Marrow Transplant. 22, 2100–2103 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Collins, S. J. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 16, 1896–1905 (2002).

    Article  CAS  PubMed  Google Scholar 

  147. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Lee, C. L. et al. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma. Nat. Communications 6, 8477 (2015).

    Article  CAS  Google Scholar 

  149. Frei, E. 3rd . Gene deletion: a new target for cancer chemotherapy. Lancet 342, 662–664 (1993).

    Article  PubMed  Google Scholar 

  150. Jaras, M. et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J. Exp. Med. 211, 605–612 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).This study demonstrates that a CGS can provide a therapeutic targeting opportunity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Fernandez, L. C., Torres, M. & Real, F. X. Somatic mosaicism: on the road to cancer. Nat. Rev. Cancer 16, 43–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  153. Shih, A. H. et al. Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Haematologica 98, 908–912 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  154. Christiansen, D. H., Andersen, M. K., Desta, F. & Pedersen-Bjergaard, J. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 19, 2232–2240 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Voso, M. T. et al. Mutations of epigenetic regulators and of the spliceosome machinery in therapy-related myeloid neoplasms and in acute leukemias evolved from chronic myeloproliferative diseases. Leukemia 27, 982–985 (2013).

    Article  CAS  PubMed  Google Scholar 

  156. Desta, F., Christiansen, D. H., Andersen, M. K. & Pedersen-Bjergaard, J. Activating mutations of JAK2V617F are uncommon in t-MDS and t-AML and are only observed in atypic cases. Leukemia 20, 547–548 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Bacher, U., Haferlach, T., Kern, W., Haferlach, C. & Schnittger, S. A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92, 744–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Andersen, M. T., Andersen, M. K., Christiansen, D. H. & Pedersen-Bjergaard, J. NPM1 mutations in therapy-related acute myeloid leukemia with uncharacteristic features. Leukemia 22, 951–955 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Christiansen, D. H., Desta, F., Andersen, M. K. & Pedersen-Bjergaard, J. Mutations of the PTPN11 gene in therapy-related MDS and AML with rare balanced chromosome translocations. Genes Chromosomes Cancer 46, 517–521 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Christiansen, D. H., Andersen, M. K. & Pedersen-Bjergaard, J. Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104, 1474–1481 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Fabiani, E. et al. SETBP1 mutations in 106 patients with therapy-related myeloid neoplasms. Haematologica 99, e152–e153 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  162. Grimwade, D. et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98, 1312–1320 (2001).

    Article  CAS  PubMed  Google Scholar 

  163. Frohling, S. et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood 108, 3280–3288 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Grimwade, D. et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116, 354–365 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Chou, W. C. et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood 116, 4086–4094 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Barjesteh van Waalwijk van Doorn-Khosrovani, S. et al. Somatic heterozygous mutations in ETV6 (TEL) and frequent absence of ETV6 protein in acute myeloid leukemia. Oncogene 24, 4129–4137 (2005).

    Article  PubMed  CAS  Google Scholar 

  167. Schnittger, S. et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100, 59–66 (2002).

    Article  CAS  PubMed  Google Scholar 

  168. Paschka, P. et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636–3643 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Levine, R. L. et al. The JAK2V617F activating mutation occurs in chronic myelomonocytic leukemia and acute myeloid leukemia, but not in acute lymphoblastic leukemia or chronic lymphocytic leukemia. Blood 106, 3377–3379 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Steudel, C. et al. Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 37, 237–251 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  172. Bacher, U., Haferlach, T., Schoch, C., Kern, W. & Schnittger, S. Implications of NRAS mutations in AML: a study of 2502 patients. Blood 107, 3847–3853 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Van Vlierberghe, P. et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia 25, 130–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Thol, F. et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Gaidzik, V. I. et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J. Clin. Oncol. 29, 1364–1372 (2011).

    Article  PubMed  Google Scholar 

  176. Tang, J. L. et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 114, 5352–5361 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Thol, F. et al. SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia 27, 2072–2075 (2013).

    Article  CAS  PubMed  Google Scholar 

  178. Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Chou, W. C. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118, 3803–3810 (2011).

    Article  CAS  PubMed  Google Scholar 

  180. Weissmann, S. et al. Landscape of TET2 mutations in acute myeloid leukemia. Leukemia 26, 934–942 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Grossmann, V. et al. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood 120, 2963–2972 (2012).

    Article  CAS  PubMed  Google Scholar 

  182. Patel, J. P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Hou, H. A. et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 119, 559–568 (2012).

    Article  CAS  PubMed  Google Scholar 

  184. Dohner, K. et al. Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders. Blood 92, 4031–4035 (1998).

    Article  CAS  PubMed  Google Scholar 

  185. Jerez, A. et al. Loss of heterozygosity in 7q myeloid disorders: clinical associations and genomic pathogenesis. Blood 119, 6109–6117 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  186. Varney, M. E. et al. Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor-TRAF6 signaling. J. Exp. Med. 212, 1967–1985 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  187. Joslin, J. M. et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 110, 719–726 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Young, D. J. et al. Knockdown of Hnrnpa0, a del(5q) gene, alters myeloid cell fate in murine cells through regulation of AU-rich transcripts. Haematologica 99, 1032–1040 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Chen, T. H. et al. Knockdown of Hspa9, a del(5q31.2) gene, results in a decrease in hematopoietic progenitors in mice. Blood 117, 1530–1539 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  190. Peng, J. et al. Myeloproliferative defects following targeting of the Drf1 gene encoding the mammalian diaphanous related formin mDia1. Cancer Res. 67, 7565–7571 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Zhao, Z. et al. Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis. Nat. Genet. 47, 539–543 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  192. Yoshimi, A. et al. Recurrent CDC25C mutations drive malignant transformation in FPD/AML. Nat. Communications 5, 4770 (2014).

    Article  CAS  Google Scholar 

  193. Liu, T. X. et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding α-catenin (CTNNA1) in myeloid cell transformation. Nat. Med. 13, 78–83 (2007).

    Article  PubMed  CAS  Google Scholar 

  194. Lehmann, S. et al. Common deleted genes in the 5q- syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia 21, 1931–1936 (2007).

    Article  CAS  PubMed  Google Scholar 

  195. Heuser, M. et al. Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 113, 1432–1443 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Madan, V. et al. Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog MLL5. Blood 113, 1444–1454 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Zhang, Y. et al. MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood 113, 1455–1463 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  198. Sundaravel, S. et al. Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc. Natl Acad. Sci. USA 112, E6359–E6368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Muto, T. et al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders. J. Exp. Med. 210, 2627–2639 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  200. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Bowler, T. G. et al. Exome sequencing of familial MDS reveals novel mutations and high rates of false positive mutations in MLL3 due to pseudogene effects (Abstract #4591). (American Society of Hematology Annual Meeting, 2015).

Download references

Acknowledgements

The authors thank Angela Stoddart and Kevin M. Shannon for critical reading of the manuscript. M.E.M. is supported by NIH 1K08CA181254, The V Foundation for Cancer Research (V Foundation Scholar Award), the University of Chicago Medicine Comprehensive Cancer Center CCSG (P30 CA14599), an Institutional Research Grant (IRG-58-004-53-IRG) from the American Cancer Society and the University of Chicago Cancer Research Foundation Auxiliary Board. L.A.G. is supported by grants from the Edward P. Evans Foundation, the Taub Foundation, the Leukemia and Lymphoma Society and the Cancer Research Foundation. M.M.L. is supported by grants from NIH (CA190372) and the Edward P. Evans Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.E.M., L.A.G. and M.M.L. conceived of, wrote and edited the manuscript.

Corresponding author

Correspondence to Michelle M. Le Beau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Acute myeloid leukaemia

(AML). A cancer of the myeloid lineage of haematopoietic cells associated with an expansion of immature cells (≥20% blasts) and defective differentiation into the mature myeloid lineages.

Myelodysplastic syndrome

(MDS). A group of clonal disorders with dysfunctional and dysplastic haematopoiesis of one or more myeloid lineage(s) leading to decreased maturation of normal myeloid cells with <20% blasts and a risk of leukaemic transformation.

Myelodysplastic/myeloproliferative neoplasms

(MDS/MPN). Clonal haematopoietic malignancy with features of MDS and excess production of one or more myeloid lineages.

Contiguous gene syndrome

(CGS). Genetic disorder caused by chromosomal copy number change, leading to combined dosage imbalance of multiple neighbouring genes typically on the scale of <5 Mb.

Standardized incidence ratio

(SIR). The ratio of the observed-to-expected number of cases based on demographic-specific incidence rates of acute myeloid leukaemia (AML) among the general population.

Fanconi anaemia

A bone marrow failure syndrome associated with an inherited mutation in one of at least 17 specific genes associated with the DNA damage response or DNA repair.

De novo AML

Acute myeloid leukaemia (AML) arising without a prior history of exposure to cytotoxic therapies or pre-existing myeloid neoplasm.

Brachytherapy

The use of radioactive sources implanted into the tumour tissue.

Knudson's two-hit hypothesis

A model stating that tumour suppressor genes are recessive and that inactivation of both alleles is required for a malignant phenotype.

5q– syndrome

A subset of MDS with an interstitial deletion of 5q as the sole cytogenetic abnormality (or with one additional abnormality). These patients present with macrocytic anaemia, megakaryocytic dysplasia and preserved or elevated platelet counts; additionally, they have a relatively favourable prognosis.

Ataxia-pancytopenia syndrome

Also known as myelocerebellar disorder; associated with ataxia, bone marrow failure and a predisposition to myeloid leukaemia with monosomy 7.

Revertant mosaicism

When a disease-causing mutation is spontaneously somatically corrected for and the corrected cell clonally expands.

Shwachman–Diamond syndrome

An inherited disorder associated with skeletal abnormalities, exocrine pancreatic insufficiency and bone marrow failure that may progress to myeloid leukaemia with chromosome 7 abnormalities.

Transition-type mutations

A DNA mutation that changes a purine to a different purine nucleotide or a pyrimidine to a different pyrimidine.

Aplastic anaemia

A disorder characterized by pancytopenia that confers risk of transformation to myelodysplastic syndrome (MDS) or acute myeloid leukaemia (AML) and occurs as a result of either germline mutations or acquired immune destruction of haematopoietic precursors.

Performance status

Measure of physical functioning of the patient to help predict prognosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNerney, M., Godley, L. & Le Beau, M. Therapy-related myeloid neoplasms: when genetics and environment collide. Nat Rev Cancer 17, 513–527 (2017). https://doi.org/10.1038/nrc.2017.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.60

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer