Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantifying transcription factor–DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy

Abstract

Probing transcription factor (TF)–DNA interactions remains challenging in complex in vivo systems such as mammalian embryos, especially when TF copy numbers and fluorescence background are high. To address this difficulty, fluorescence correlation spectroscopy (FCS) can be combined with the use of photoactivatable fluorescent proteins to achieve selective photoactivation of a subset of tagged TF molecules. This approach, termed paFCS, enables FCS measurements within single cell nuclei inside live embryos, and obtains autocorrelation data of a quality previously only attainable in simpler in vitro cell culture systems. Here, we present a protocol demonstrating the applicability of paFCS in developing mouse embryos by outlining its implementation on a commercial laser-scanning microscope. We also provide procedures for optimizing the photoactivation and acquisition parameters and determining key parameters describing TF–DNA binding. The entire procedure can be performed within 2 d (excluding embryo culture time), although the acquisition of each paFCS data set takes only 10 min. This protocol can be used to noninvasively reveal cell-to-cell variation in TF dynamics, as well as critical, fate-predicting changes over the course of early embryonic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: paFCS workflow.
Figure 2: Selective photoactivation of a TF subpopulation and optimization of photoactivation and paFCS acquisition parameters.
Figure 3: Acquisition of fluorescence intensity fluctuation traces and ACF curves.
Figure 4: Model selection for fitting paFCS data.
Figure 5: Probing the impact of mutation and drug treatment on TF-binding dynamics with paFCS.

Similar content being viewed by others

References

  1. McNally, J.G., Müller, W.G., Walker, D., Wolford, R. & Hager, G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  2. Gebhardt, J.C.M. et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10, 421–426 (2013).

    Article  CAS  Google Scholar 

  3. Mueller, F., Wach, P. & McNally, J.G. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. Biophys. J. 94, 3323–3339 (2008).

    Article  CAS  Google Scholar 

  4. Morisaki, T., Müller, W.G., Golob, N., Mazza, D. & McNally, J.G. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat. Commun. 5, 4456 (2014).

    Article  CAS  Google Scholar 

  5. Chen, J. et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156, 1274–1285 (2014).

    Article  CAS  Google Scholar 

  6. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J.G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    Article  CAS  Google Scholar 

  7. Sugo, N. et al. Single-molecule imaging reveals dynamics of CREB transcription factor bound to its target sequence. Sci. Rep. 5, 10662 (2015).

    Article  CAS  Google Scholar 

  8. Speil, J. et al. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys. J. 101, 2592–2600 (2011).

    Article  CAS  Google Scholar 

  9. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    Article  Google Scholar 

  10. Izeddin, I. et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3, e02230 (2014).

    Article  Google Scholar 

  11. Zhao, Z.W., White, M.D., Bissiere, S., Levi, V. & Plachta, N. Quantitative imaging of mammalian transcriptional dynamics: from single cells to whole embryos. BMC Biol. 14, 115 (2016).

    Article  Google Scholar 

  12. Hager, G.L., McNally, J.G. & Misteli, T. Transcription dynamics. Mol. Cell 35, 741–753 (2009).

    Article  CAS  Google Scholar 

  13. Voss, T.C. & Hager, G.L. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15, 69–81 (2014).

    Article  CAS  Google Scholar 

  14. Coleman, R.A. et al. Imaging transcription: past, present, and future. Cold Spring Harb. Symp. Quant. Biol. 80, 1–8 (2015).

    Article  Google Scholar 

  15. Darzacq, X. et al. Imaging transcription in living cells. Annu. Rev. Biophys. 38, 173–196 (2009).

    Article  CAS  Google Scholar 

  16. Magde, D., Elson, E. & Webb, W.W. Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29, 705–708 (1972).

    Article  CAS  Google Scholar 

  17. Elson, E.L. Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011).

    Article  CAS  Google Scholar 

  18. Macháň, R. & Wohland, T. Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett. 588, 3571–3584 (2014).

    Article  Google Scholar 

  19. Digman, M.A. & Gratton, E. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 645–668 (2011).

    Article  CAS  Google Scholar 

  20. Weidemann, T., Mücksch, J. & Schwille, P. Fluorescence fluctuation microscopy: a diversified arsenal of methods to investigate molecular dynamics inside cells. Curr. Opin. Struct. Biol. 28, 69–76 (2014).

    Article  CAS  Google Scholar 

  21. Bacia, K. & Schwille, P. Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat. Protoc. 2, 2842–2856 (2007).

    Article  CAS  Google Scholar 

  22. Krieger, J.W. et al. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat. Protoc. 10, 1948–1974 (2015).

    Article  CAS  Google Scholar 

  23. Rossow, M.J., Sasaki, J.M., Digman, M.A. & Gratton, E. Raster image correlation spectroscopy in live cells. Nat. Protoc. 5, 1761–1774 (2010).

    Article  CAS  Google Scholar 

  24. Weidemann, T. Application of fluorescence correlation spectroscopy (FCS) to measure the dynamics of fluorescent proteins in living cells. in Fluorescence Spectroscopy and Microscopy: Methods and Protocols (eds. Engelborghs, Yves & Visser, Antonie J.W.G.) 539–555 (Humana Press, 2014).

  25. Biggin, M.D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  Google Scholar 

  26. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    Article  CAS  Google Scholar 

  27. Kaur, G. et al. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy. Nat. Commun. 4, 1637 (2013).

    Article  Google Scholar 

  28. White, M.D. et al. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165, 75–87 (2016).

    Article  CAS  Google Scholar 

  29. Zhao, Z.W., Gebhardt, J.C.M., Suter, D.M. & Xie, X.S. Reply to 'Convergence of chromatin binding estimates in live cells'. Nat. Methods 10, 692 (2013).

    Article  CAS  Google Scholar 

  30. Wang, Y., Wang, X., Wohland, T. & Sampath, K. Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife 5, e13879 (2016).

    Article  Google Scholar 

  31. Yu, S.R. et al. Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461, 533–536 (2009).

    Article  CAS  Google Scholar 

  32. Shi, X. et al. Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys. J. 97, 678–686 (2009).

    Article  CAS  Google Scholar 

  33. Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotech. 29, 835–839 (2011).

    Article  CAS  Google Scholar 

  34. Wohland, T., Shi, X., Sankaran, J. & Stelzer, E.H.K. Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments. Opt. Express 18, 10627–10641 (2010).

    Article  CAS  Google Scholar 

  35. Digman, M.A. et al. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89, 1317–1327 (2005).

    Article  CAS  Google Scholar 

  36. Digman, M.A. & Gratton, E. Imaging barriers to diffusion by pair correlation functions. Biophys. J. 97, 665–673 (2009).

    Article  CAS  Google Scholar 

  37. Ries, J., Chiantia, S. & Schwille, P. Accurate determination of membrane dynamics with line-scan FCS. Biophys. J. 96, 1999–2008 (2009).

    Article  CAS  Google Scholar 

  38. Pantazis, P. & González-Gaitán, M. Localized multiphoton photoactivation of paGFP in Drosophila wing imaginal discs. J. Biomed. Opt. 12, 044004 (2007).

    Article  Google Scholar 

  39. Plachta, N., Bollenbach, T., Pease, S., Fraser, S.E. & Pantazis, P. Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat. Cell Biol. 13, 117–123 (2011).

    Article  CAS  Google Scholar 

  40. Wang, S., Moffitt, J.R., Dempsey, G.T., Xie, X.S. & Zhuang, X. Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging. Proc. Natl. Acad. Sci. USA 111, 8452–8457 (2014).

    Article  CAS  Google Scholar 

  41. Mohr, M.A., Argast, P. & Pantazis, P. Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins. Nat. Protoc. 11, 2419–2431 (2016).

    Article  CAS  Google Scholar 

  42. Rigler, R., Mets, Ü., Widengren, J. & Kask, P. Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur. Biophys. J. 22, 169–175 (1993).

    Article  CAS  Google Scholar 

  43. Widengren, J., Mets, Ü. & Rigler, R. Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy. Chem. Phys. 250, 171–186 (1999).

    Article  CAS  Google Scholar 

  44. Halford, S.E. & Marko, J.F. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040–3052 (2004).

    Article  CAS  Google Scholar 

  45. Michelman-Ribeiro, A. et al. Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys. J. 97, 337–346 (2009).

    Article  CAS  Google Scholar 

  46. Elson, E.L. Brief introduction to fluorescence correlation spectroscopy. in Methods in Enzymology Vol. 518 (ed. Tetin, S.Y.), 11–41 (Academic Press, 2013).

  47. Sobell, H.M. Actinomycin and DNA transcription. Proc. Natl. Acad. Sci. USA 82, 5328–5331 (1985).

    Article  CAS  Google Scholar 

  48. Yoshida, M., Horinouchi, S. & Beppu, T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. BioEssays 17, 423–430 (1995).

    Article  CAS  Google Scholar 

  49. Behringer, R., Gertsenstein, M., Nagy, K.V. & Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual 4th ed. (Cold Spring Harbor Laboratory Press, 2014).

  50. Müller, P., Schwille, P. & Weidemann, T. PyCorrFit—generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30, 2532–2533 (2014).

    Article  Google Scholar 

  51. Ries, J. et al. Automated suppression of sample-related artifacts in fluorescence correlation spectroscopy. Opt. Express 18, 11073–11082 (2010).

    Article  CAS  Google Scholar 

  52. Beechem, J.M. Global analysis of biochemical and biophysical data. in Methods Enzymol. Vol. 210, 37–54 (Academic Press, 1992).

  53. Wachsmuth, M., Waldeck, W. & Langowski, J. Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J. Mol. Biol. 298, 677–689 (2000).

    Article  CAS  Google Scholar 

  54. He, J., Guo, S.-M. & Bathe, M. Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: theory. Anal. Chem. 84, 3871–3879 (2012).

    Article  CAS  Google Scholar 

  55. Sun, G. et al. Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo. Anal. Chem. 87, 4326–4333 (2015).

    Article  CAS  Google Scholar 

  56. Schwille, P., Bieschke, J. & Oehlenschläger, F. Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies. Biophys. Chem. 66, 211–228 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Silva for help with embryo isolation and microinjection, and V. Levi for advice on modeling. This work was supported by an A*STAR National Science Scholarship (to Z.W.Z.), a Human Frontiers Science Program Fellowship (to J.Z.), and an A*STAR Investigatorship and EMBO Young Investigator grants (to N.P.).

Author information

Authors and Affiliations

Authors

Contributions

N.P. conceived the project; Z.W.Z. and Y.D.A. performed the microscope calibration, optimization of photoactivation/acquisition parameters, and paFCS measurements; M.D.W. and J.Z. performed drug treatment and mutant TF experiments. Y.D.A. performed data analysis and modeling. S.B. performed embryo isolation, culture, and mRNA microinjections. Z.W.Z., M.D.W., Y.D.A., J.Z., S.B. and N.P. wrote the manuscript.

Corresponding author

Correspondence to Nicolas Plachta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., White, M., Alvarez, Y. et al. Quantifying transcription factor–DNA binding in single cells in vivo with photoactivatable fluorescence correlation spectroscopy. Nat Protoc 12, 1458–1471 (2017). https://doi.org/10.1038/nprot.2017.051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2017.051

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing