Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates

Abstract

Predicting immune responses before vaccination is challenging because of the complexity of the governing parameters. Nevertheless, recent work has shown that B cell receptor (BCR)-antigen engagement in vitro can prove a powerful means of informing the design of antibody-based vaccines. We have developed this principle into a two-phased immunogen evaluation pipeline to rank-order vaccine candidates. In phase 1, recombinant antigens are screened for reactivity to the germline precursors that produce the antibody responses of interest. To both mimic the architecture of initial antigen engagement and facilitate rapid immunogen screening, these antibodies are expressed as membrane-anchored IgM (mIgM) in 293F indicator cells. In phase 2, the binding hits are multimerized by nanoparticle or proteoliposome display, and they are evaluated for BCR triggering in an engineered B cell line displaying the IgM sequences of interest. Key developments that complement existing methodology in this area include the following: (i) introduction of a high-throughput screening step before evaluation of more time-intensive BCR-triggering analyses; (ii) generalizable multivalent antigen-display platforms needed for BCR activation; and (iii) engineered use of a human B cell line that does not display endogenous antibody, but only ectopically expressed BCR sequences of interest. Through this pipeline, the capacity to initiate favorable antibody responses is evaluated. The entire protocol can be completed within 2.5 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BCR antigen-recognition pipeline.
Figure 2: Inferring a germline-reverted antibody.
Figure 3: A leader sequence should precede the variable region of the germline-reverted antibody.
Figure 4: Overlap PCR to generate the membrane-anchored IgM configuration of germline-reverted antibodies.
Figure 5: Membrane presented antibody as a means to prescreen candidate immunogens for the capacity to engage germline BCR sequences of interest.
Figure 6: Lentiviral-mediated expression of BCR in Ramos cells.
Figure 7: BCR activation in response to multimerized candidate immunogen.
Figure 8: Proteoliposome array of candidate immunogen.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Slifka, M.K. & Amanna, I. How advances in immunology provide insight into improving vaccine efficacy. Vaccine 32, 2948–2957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vinuesa, C.G., Linterman, M.A., Goodnow, C.C. & Randall, K.L. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol. Rev. 237, 72–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. G Gruell, H. & Klein, F. Opening fronts in HIV vaccine development: tracking the development of broadly neutralizing antibodies. Nat. Med. 20, 478–479 (2014).

    Article  CAS  Google Scholar 

  5. Kirchenbaum, G.A. & Ross, T.M. Eliciting broadly protective antibody responses against influenza. Curr. Opin. Immunol. 28C, 71–76 (2014).

    Article  CAS  Google Scholar 

  6. Lingwood, D. et al. Structural and genetic basis for development of broadly neutralizing influenza antibodies. Nature 489, 566–570 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jardine, J. et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 340, 711–716 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ota, T. et al. Anti-HIV B cell lines as candidate vaccine biosensors. J. Immunol. 189, 4816–4824 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. McGuire, A.T. et al. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies. J. Exp. Med. 210, 655–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoot, S. et al. Recombinant HIV envelope proteins fail to engage germline versions of anti-CD4bs bNAbs. PLoS Pathog. 9, e1003106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGuire, A.T., Glenn, J.A., Lippy, A. & Stamatatos, L. Diverse recombinant HIV-1 Envs fail to activate B cells expressing the germline B cell receptors of the broadly neutralizing anti-HIV-1 antibodies PG9 and 447-52D. J. Virol. 88, 2645–2657 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. McGuire, A.T. et al. HIV antibodies. Antigen modification regulates competition of broad and narrow neutralizing HIV antibodies. Science 346, 1380–1383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomson, C.A. et al. Pandemic H1N1 influenza infection and vaccination in humans induces cross-protective antibodies that target the hemagglutinin stem. Front. Immunol. 3, 87 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corti, D. et al. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120, 1663–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wrammert, J. et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J. Exp. Med. 208, 181–193 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avnir, Y. et al. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog. 10, e1004103 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through redundant mutations. Nature 516, 418–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Wheatley, A.K. et al. H5N1 vaccine-elicited memory B cells are genetically constrained by the IGHV locus in the recognition of a neutralizing epitope in the hemagglutinin stem. J. Immunol. 195, 602–610 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Whittle, J.R. et al. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J. Virol. 88, 4047–4057 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhou, T. et al. Structural repertoire of HIV-1-neutralizing antibodies targeting the CD4 supersite in 14 donors. Cell 161, 1280 1292 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dosenovic, P. et al. Immunization for HIV-1 broadly neutralizing antibodies in human Ig knock-in mice. Cell 161, 1505–1515 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jardine, J.G. et al. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science 349, 156–161 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yassine, H.M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Davey, A.M. & Pierce, S.K. Intrinsic differences in the initiation of B cell receptor signaling favor responses of human IgG+ memory B cells over IgM+ naive B cells. J. Immunol. 188, 3332–3341 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Xu, Y. et al. No receptor stands alone: IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory. Cell Res. 24, 651–664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kanekiyo, M. et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499, 102–106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Metzger, H. Transmembrane signaling: the joy of aggregation. J. Immunol. 149, 1477–1487 (1992).

    CAS  PubMed  Google Scholar 

  28. Akahata, W. et al. A virus-like particle vaccine for epidemic chikungunya virus protects nonhuman primates against infection. Nat. Med. 16, 334–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cumbers, S.J. et al. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20, 1129–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Novak, E.J. & Rabinovitch, P.S. Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/fura red fluorescence ratios. Cytometry 17, 135–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Wendt, E.R., Ferry, H., Greaves, D.R. & Keshav, S. Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets. PLoS ONE 10, e0119532 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dintzis, H.M., Dintzis, R.Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA 73, 3671–3675 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo, X.M. et al. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 113, 1422–1431 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Bachmann, M.F. & Jennings, G.T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10, 787–796 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Batista, F.D. & Harwood, N.E. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9, 15–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Cyster, J.G. B cell follicles and antigen encounters of the third kind. Nat. Immunol. 11, 989–996 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Naldini, L., Blomer, U., Gage, F.H., Trono, D. & Verma, I.M. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc. Natl. Acad. Sci. USA 93, 11382–11388 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schroeder, H.W. Jr. & Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 125, S41–S52 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu, X. et al. Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. Sequences of Proteins of Immunological Interest (U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 1991).

  42. Lefranc, M.P. et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp. Immunol. 27, 55–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kong, W.P. et al. Protective immunity to lethal challenge of the 1918 pandemic influenza virus by vaccination. Proc. Natl. Acad. Sci. USA 103, 15987–15991 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei, C.J. et al. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329, 1060–1064 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Muller, R., Wienands, J. & Reth, M. The serine and threonine residues in the Ig-α cytoplasmic tail negatively regulate immunoreceptor tyrosine-based activation motif-mediated signal transduction. Proc. Natl. Acad. Sci. USA 97, 8451–8454 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heizmann, B., Reth, M. & Infantino, S. Syk is a dual-specificity kinase that self-regulates the signal output from the B-cell antigen receptor. Proc. Natl. Acad. Sci. USA 107, 18563–18568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sulzer, B. & Perelson, A.S. Immunons revisited: binding of multivalent antigens to B cells. Mol. Immunol. 34, 63–74 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Ekiert, D.C. et al. Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Lingwood laboratory for critical reading of the manuscript, S. Perfetto (Vaccine Research Center, National Institutes of Health (NIH)) for flow cytometry advice, and J. Boyington and J. Whittle (Vaccine Research Center, NIH) for key discussions. This work was supported by the following awards to D.L.: a Harvard University Center for AIDS Research (CFAR) grant (P30 AI060354); a Broad-Ragon ENDHIV Catalytic grant; the William F. Milton Fund; and the Gilead Sciences Research Scholars Program in HIV.

Author information

Authors and Affiliations

Authors

Contributions

G.C.W., R.F.V., M.K., G.J.N., J.R.M. and D.L. designed the research; G.C.W., R.F.V., M.K. and D.L. performed the research; G.C.W., R.F.V., M.K., G.J.N., J.R.M. and D.L. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Daniel Lingwood.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weaver, G., Villar, R., Kanekiyo, M. et al. In vitro reconstitution of B cell receptor–antigen interactions to evaluate potential vaccine candidates. Nat Protoc 11, 193–213 (2016). https://doi.org/10.1038/nprot.2016.009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2016.009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology