Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates

Abstract

Herein we describe a protocol that uses hollow-fiber flow field-flow fractionation (FFF) coupled with multiangle light scattering (MALS) for hydrodynamic size-based separation and characterization of complex protein aggregates. The fractionation method, which requires 1.5 h to run, was successfully modified from the analysis of protein aggregates, as found in simple protein mixtures, to complex aggregates, as found in total cell lysates. In contrast to other related methods (filter assay, analytical ultracentrifugation, gel electrophoresis and size-exclusion chromatography), hollow-fiber flow FFF coupled with MALS allows a flow-based fractionation of highly purified protein aggregates and simultaneous measurement of their molecular weight, r.m.s. radius and molecular conformation (e.g., round, rod-shaped, compact or relaxed). The polyethersulfone hollow fibers used, which have a 0.8-mm inner diameter, allow separation of as little as 20 μg of total cell lysates. In addition, the ability to run the samples in different denaturing and nondenaturing buffer allows defining true aggregates from artifacts, which can form during sample preparation. The protocol was set up using Paraquat-induced carbonylation, a model that induces protein aggregation in cultured cells. This technique will advance the biochemical, proteomic and biophysical characterization of molecular-weight aggregates associated with protein mutations, as found in many CNS degenerative diseases, or chronic oxidative stress, as found in aging, and chronic metabolic and inflammatory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of HF5; separation principle and protocol workflow.
Figure 2: HF5 separation device setup and flow parameters.
Figure 3: Results: carbonyl content and SDS-PAGE of protein aggregates.
Figure 4: Results: Separation and characterization of protein aggregates.

Similar content being viewed by others

References

  1. Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10, 524–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Kalia, L.V., Kalia, S.K., McLean, P.J., Lozano, A.M. & Lang, A.E. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 73, 155–169 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perlmutter, D.H. The role of autophagy in α-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy 2, 258–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Fink, A.L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res. 39, 628–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Cannizzo, E.S. et al. Age-related oxidative stress compromises endosomal proteostasis. Cell Rep. 2, 136–149 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cannizzo, E.S., Clement, C.C., Sahu, R., Follo, C. & Santambrogio, L. Oxidative stress, inflamm-aging and immunosenescence. J. Proteomics 74, 2313–2323 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Scharf, B. et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. Chem. Biol. 20, 922–934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bence, N.F., Sampat, R.M. & Kopito, R.R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Berke, S.J. & Paulson, H.L. Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr. Opin. Genet. Dev. 13, 253–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Cuervo, A.M., Wong, E.S. & Martinez-Vicente, M. Protein degradation, aggregation, and misfolding. Mov. Disord. 25 (suppl. 1), S49–S54 (2010).

    Article  PubMed  Google Scholar 

  12. Holmberg, M. & Nollen, E.A. Analyzing modifiers of protein aggregation in C. elegans by native agarose gel electrophoresis. Methods Mol. Biol. 1017, 193–199 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Y. & Calderwood, S.K. Autophagy, protein aggregation and hyperthermia: a mini-review. Int. J. Hyperthermia 27, 409–414 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, C., Gao, Y., Barrett, J. & Hu, B. Autophagy and protein aggregation after brain ischemia. J. Neurochem. 115, 68–78 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lok, C.N., Sy, L.K., Liu, F. & Che, C.M. Activation of autophagy of aggregation-prone ubiquitinated proteins by timosaponin A-III. J. Biol. Chem. 286, 31684–31696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reschiglian, P. & Moon, M.H. Flow field-flow fractionation: a pre-analytical method for proteomics. J. Proteomics 71, 265–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Giddings, J.C. A new separation concept based on a coupling of concentration and flow nonuniformities. Separ. Sci. 1, 123–125 (1966).

    CAS  Google Scholar 

  18. Giddings, J.C. The conceptual basis of field-flow fractionation. J. Chem. Educ. 50, 667–669 (1973).

    Article  CAS  Google Scholar 

  19. Lee, J.Y., Min, H.K., Choi, D. & Moon, M.H. Profiling of phospholipids in lipoproteins by multiplexed hollow fiber flow field-flow fractionation and nanoflow liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1217, 1660–1666 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Reschiglian, P., Zattoni, A., Roda, B. & Cinque, L. On-line hollow-fiber flow field-flow fractionation-electrospray ionization/time-of-flight mass spectrometry of intact proteins. Anal. Chem. 77, 47–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Oueslati, A., Fournier, M. & Lashuel, H.A. Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog. Brain Res. 183, 115–145 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Cuervo, A.M., Stefanis, L., Fredenburg, R., Lansbury, P.T. & Sulzer, D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 305, 1292–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, S.J. et al. A detergent-insoluble membrane compartment contains Aβ in vivo. Nat. Med. 4, 730–734 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Lemere, C.A. et al. The E280A presenilin 1 Alzheimer mutation produces increased Aβ 42 deposition and severe cerebellar pathology. Nat. Med. 2, 1146–1150 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Phiel, C.J., Wilson, C.A., Lee, V.M. & Klein, P.S. GSK-3α regulates production of Alzheimer's disease amyloid-β peptides. Nature 423, 435–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Wong, E.S. et al. Autophagy-mediated clearance of aggresomes is not a universal phenomenon. Hum. Mol. Genet. 17, 2570–2582 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dehay, B. & Bertolotti, A. Critical role of the proline-rich region in huntingtin for aggregation and cytotoxicity in yeast. J. Biol. Chem. 281, 35608–35615 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Fiumara, F., Fioriti, L., Kandel, E.R. & Hendrickson, W.A. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and polyQ proteins. Cell 143, 1121–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arena, S., Salzano, A.M., Renzone, G., D'Ambrosio, C. & Scaloni, A. Non-enzymatic glycation and glycoxidation protein products in foods and diseases: an interconnected, complex scenario fully open to innovative proteomic studies. Mass Spectrom. Rev. 33, 49–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Gillery, P. Oxidative stress and protein glycation in diabetes mellitus. Ann. Biol. Clin. (Paris) 64, 309–314 (2006).

    CAS  Google Scholar 

  33. Lapolla, A., Molin, L. & Traldi, P. Protein glycation in diabetes as determined by mass spectrometry. Int. J. Endocrinol. 2013, 412103 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Perkins, B.A. et al. Serum levels of advanced glycation endproducts and other markers of protein damage in early diabetic nephropathy in type 1 diabetes. PLoS ONE 7, e35655 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simm, A. Protein glycation during aging and in cardiovascular disease. J. Proteomics 92, 248–259 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Janue, A., Olive, M. & Ferrer, I. Oxidative stress in desminopathies and myotilinopathies: a link between oxidative damage and abnormal protein aggregation. Brain Pathol. 17, 377–388 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Takalo, M., Salminen, A., Soininen, H., Hiltunen, M. & Haapasalo, A. Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am. J. Neurodegener. Dis. 2, 1–14 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Shelkovnikova, T.A. et al. Proteinopathies—forms of neurodegenerative disorders with protein aggregation-based pathology. Mol. Biol. (Mosk) 46, 402–415 (2012).

    Article  CAS  Google Scholar 

  39. Riley, B.E. et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191, 537–552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tyedmers, J., Mogk, A. & Bukau, B. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11, 777–788 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Cummings, C.J. et al. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 19, 148–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Demasi, M. & Davies, K.J. Proteasome inhibitors induce intracellular protein aggregation and cell death by an oxygen-dependent mechanism. FEBS Lett. 542, 89–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Lu, M., Echeverri, F. & Moyer, B.D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4, 416–433 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Wyttenbach, A. et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 2898–2903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reschiglian, P. et al. Hollow-fiber flow field-flow fractionation with multi-angle laser scattering detection for aggregation studies of therapeutic proteins. Anal. Bioanal. Chem. 406, 1619–1627 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Kang, D. & Moon, M.H. Hollow fiber flow field-flow fractionation of proteins using a microbore channel. Anal. Chem. 77, 4207–4212 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Johann, C. et al. A novel approach to improve operation and performance in flow field-flow fractionation. J. Chromatogr. A 1218, 4126–4131 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Park, I., Paeng, K.-J., Kang, D. & Moon, M.H. Performance of hollow-fiber flow field-flow fractionation in protein separation. J. Separ. Sci. 28, 2043–2049 (2005).

    Article  CAS  Google Scholar 

  49. Zattoni, A. et al. Hollow-fiber flow field-flow fractionation of whole blood serum. J. Chromatogr. A 1183, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Reschiglian, P., Zattoni, A., Rambaldi, D.C., Roda, A. & Moon, M.H. Hollow-fiber flow field-flow fractionation for mass spectrometry: from proteins to whole bacteria. In Detection of Biological Agents for the Prevention of Bioterrorism (ed. Banoub, J.) 13–36 (Springer, 2011).

  51. Zattoni, A., Rambaldi, D.C., Casolari, S., Roda, B. & Reschiglian, P. Tandem hollow-fiber flow field-flow fractionation. J. Chromatogr. A 1218, 4132–4137 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, J.Y., Kim, K.H. & Moon, M.H. Evaluation of multiplexed hollow fiber flow field-flow fractionation for semi-preparative purposes. J. Chromatogr. A 1216, 6539–6542 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Kang, D., Ji, E.S., Moon, M.H. & Yoo, J.S. Lectin-based enrichment method for glycoproteomics using hollow fiber flow field-flow fractionation: application to Streptococcus pyogenes. J. Proteome Res. 9, 2855–2862 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Reschiglian, P., Zattoni, A., Cinque, L. & Roda, B. Hollow-fiber flow field-flow fractionation for whole bacteria analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 76, 2103–2111 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Kang, D. & Moon, M.H. Development of non-gel-based two-dimensional separation of intact proteins by an on-line hyphenation of capillary isoelectric focusing and hollow fiber flow field-flow fractionation. Anal. Chem. 78, 5789–5798 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Silveira, J.R. et al. The most infectious prion protein particles. Nature 437, 257–261 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stegemann, J., Ventzki, R., Schrödel, A. & de Marco, A. Comparative analysis of protein aggregates by blue native electrophoresis and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a three-dimensional geometry gel. Proteomics 5, 2002–2009 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Ishii, T. et al. Characterization of acrolein-induced protein cross-links. Free Radic. Res. 41, 1253–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Linetsky, M., Shipova, E., Cheng, R. & Ortwerth, B.J. Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins. Biochim. Biophys. Acta 1782, 22–34 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Scharf, B. et al. Age-related carbonylation of fibrocartilage structural proteins drives tissue degenerative modification. Chem. Biol. 20, 922–934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mirzaei, H. & Regnier, F. Protein:protein aggregation induced by protein oxidation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 873, 8–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Carpenter, J.F. et al. Potential inaccurate quantitation and sizing of protein aggregates by size-exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J. Pharm. Sci. 99, 2200–2208 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Arakawa, T., Ejima, D., Li, T. & Philo, J.S. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J. Pharm. Sci. 99, 1674–1692 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Kawahara, K. & Tanford, C. Viscosity and density of aqueous solutions of urea and guanidine hydrochloride. J. Biol. Chem. 241, 3228–3232 (1966).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Superon for the loan of the Eclipse DUALTEC flow FFF separation system and Eclipse ISIS software, and Wyatt Technology for the loan of the MALS detector DAWN EOS and Astra software. We thank C. Johann for the valuable suggestions and comments on the manuscript and S. Elsenberg (Superon) for technical assistance. The work was supported by National Institute on Aging (NIA) grant PO1AG031781 to A.M.C. and PO1AG031782 to L.S. V.Z. is supported by the PhD program in Genetics and Cell Biology at the University of Tuscia, Department of Ecology and Biology (DEB).

Author information

Authors and Affiliations

Authors

Contributions

M.T., B.R., A.Z., P.R., A.M.C. and L.S. designed the experiments; M.T., V.Z., C.C.C., F.B., A.M.U. and J.A.R.-N. performed the experiments; and M.T., V.Z., C.C.C., B.R., A.Z., P.R., A.M.C. and L.S. wrote the paper.

Corresponding author

Correspondence to Laura Santambrogio.

Ethics declarations

Competing interests

A.Z., B.R. and P.R. are associates of the academic spinoff company byFlow SRL. The company mission includes know-how transfer, development, and application of novel technologies and methodologies for the analysis and characterization of samples of nano-biotechnological interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanase, M., Zolla, V., Clement, C. et al. Hydrodynamic size-based separation and characterization of protein aggregates from total cell lysates. Nat Protoc 10, 134–148 (2015). https://doi.org/10.1038/nprot.2015.009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2015.009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing