Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Quantitative profiling of the protein coronas that form around nanoparticles

Abstract

Nanoparticle applications in biotechnology and biomedicine are steadily increasing. In biological fluids, proteins bind to nanoparticles that form the protein corona, crucially affecting the nanoparticles' biological identity. As the corona affects in vitro and/or in vivo nanoparticle applications, we developed a method to obtain time-resolved protein corona profiles formed on various nanoparticles. After incubation in plasma or a similar biofluid, or after injection into a mouse, the first analytical step is sedimentation of the nanoparticle-protein complexes through a sucrose cushion, thereby allowing analysis of early corona formation time points. Next, corona profiles are visualized by gel electrophoresis and quantitatively analyzed after tryptic digestion using label-free liquid chromatography–high-resolution mass spectrometry. In contrast to other approaches, our established methodology allows the researcher to obtain qualitative and quantitative high-resolution corona signatures. The protocol can be readily extended to the investigation of protein coronas from various nanomaterials (as an example, we applied this protocol to different silica nanoparticles (SiNPs) and polystyrene nanoparticles (PSNPs)). Depending on the number of samples, the protocol from nanoparticle-protein complex recovery to data evaluation takes 8–12 d to complete.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Schematic overview of the protocol's entire workflow.
Figure 3: Effect of residual blood plasma on corona profiles.
Figure 4: NanoUPLC setup for direct injection.
Figure 5: 1D gel electrophoresis to visualize nanoparticle-bound human plasma proteins.
Figure 6: Effect of different nanoparticle properties on corona profiles.

Similar content being viewed by others

References

  1. Reese, M. Nanotechnology: using co-regulation to bring regulation of modern technologies into the 21st century. Health Matrix Clevel. 23, 537–572 (2013).

    PubMed  Google Scholar 

  2. Webster, T.J. Interview: Nanomedicine: past, present and future. Nanomedicine (Lond.) 8, 525–529 (2013).

    Article  CAS  Google Scholar 

  3. Nystrom, A.M. & Fadeel, B. Safety assessment of nanomaterials: implications for nanomedicine. J. Control Release 161, 403–408 (2012).

    Article  Google Scholar 

  4. Oberdorster, G. Nanotoxicology: in vitro-in vivo dosimetry. Environ. Health Perspect. 120, A13 (2012).

    Article  Google Scholar 

  5. Rauscher, H., Sokull-Kluttgen, B. & Stamm, H. The European Commission's recommendation on the definition of nanomaterial makes an impact. Nanotoxicology 7, 1195–1197 (2013).

    Article  Google Scholar 

  6. Monopoli, M.P., Aberg, C., Salvati, A. & Dawson, K.A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Article  CAS  Google Scholar 

  7. Monopoli, M.P., Bombelli, F.B. & Dawson, K.A. Nanobiotechnology: nanoparticle coronas take shape. Nat. Nanotechnol. 6, 11–12 (2011).

    Article  CAS  Google Scholar 

  8. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    Article  CAS  Google Scholar 

  9. Capriotti, A.L. et al. DNA affects the composition of lipoplex protein corona: a proteomics approach. Proteomics 11, 3349–3358 (2012).

    Article  Google Scholar 

  10. Xia, X.R., Monteiro-Riviere, N.A. & Riviere, J.E. An index for characterization of nanomaterials in biological systems. Nat. Nanotechnol. 5, 671–675 (2010).

    Article  CAS  Google Scholar 

  11. Nel, A.E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  12. Tenzer, S. et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis. ACS Nano 5, 7155–7167 (2011).

    Article  CAS  Google Scholar 

  13. Zhang, H. et al. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size. Proteomics 11, 4569–4577 (2011).

    Article  CAS  Google Scholar 

  14. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol 8, 137–143 (2013).

    Article  CAS  Google Scholar 

  15. Wegner, K.D., Jin, Z., Linden, S., Jennings, T.L. & Hildebrandt, N. Quantum dot–based Forster resonance energy transfer immunoassay for sensitive clinical diagnostics of low-volume serum samples. ACS Nano 7, 7411–7419 (2013).

    Article  CAS  Google Scholar 

  16. Barkam, S., Saraf, S. & Seal, S. Fabricated micro-nano devices for in vivo and in vitro biomedical applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 544–568 (2013).

    Article  CAS  Google Scholar 

  17. Dobrovolskaia, M.A., Germolec, D.R. & Weaver, J.L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 4, 411–414 (2009).

    Article  CAS  Google Scholar 

  18. Distler, U. et al. Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat. Methods 11, 167–170 (2014).

    Article  CAS  Google Scholar 

  19. Meister, S. et al. Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood-brain barrier model. Alzheimer's Res. Ther. 5, 51 (2013).

    Article  Google Scholar 

  20. Evans, C. et al. An insight into iTRAQ: where do we stand now? Anal. Bioanal. Chem. 404, 1011–1027 (2012).

    Article  CAS  Google Scholar 

  21. Bantscheff, M., Lemeer, S., Savitski, M.M. & Kuster, B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal. Bioanal. Chem. 404, 939–965 (2012).

    Article  CAS  Google Scholar 

  22. Tate, S., Larsen, B., Bonner, R. & Gingras, A.C. Label-free quantitative proteomics trends for protein-protein interactions. J. Proteomics 81, 91–101 (2013).

    Article  CAS  Google Scholar 

  23. Patel, V.J. et al. A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J. Proteome Res. 8, 3752–3759 (2009).

    Article  CAS  Google Scholar 

  24. Cai, X. et al. Characterization of carbon nanotube protein corona by using quantitative proteomics. Nanomedicine 9, 583–593 (2013).

    Article  CAS  Google Scholar 

  25. Farrah, T. et al. A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 10, M110.006353 (2011).

    Article  Google Scholar 

  26. Nahnsen, S., Bielow, C., Reinert, K. & Kohlbacher, O. Tools for label-free peptide quantification. Mol. Cell. Proteomics 12, 549–556 (2013).

    Article  CAS  Google Scholar 

  27. Gethings, L.A. & Connolly, J.B. Simplifying the proteome: analytical strategies for improving peak capacity. Adv. Exp. Med. Biol. 806, 59–77 (2014).

    Article  CAS  Google Scholar 

  28. Gebauer, J.S. et al. Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28, 9673–9679 (2012).

    Article  CAS  Google Scholar 

  29. Walczyk, D., Bombelli, F.B., Monopoli, M.P., Lynch, I. & Dawson, K.A. What the cell 'sees' in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

    Article  CAS  Google Scholar 

  30. Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J. & Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010).

    Article  CAS  Google Scholar 

  31. Dell'Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T. & Linse, S. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE 5, e10949 (2010).

    Article  Google Scholar 

  32. Barran-Berdon, A.L. et al. Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29, 6485–6494 (2013).

    Article  CAS  Google Scholar 

  33. Natte, K. et al. Impact of polymer shell on the formation and time evolution of nanoparticle-protein corona. Colloids Surf. B Biointerfaces 104, 213–220 (2013).

    Article  CAS  Google Scholar 

  34. Rocker, C., Potzl, M., Zhang, F., Parak, W.J. & Nienhaus, G.U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 4, 577–580 (2009).

    Article  Google Scholar 

  35. Lundqvist, M. et al. The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011).

    Article  CAS  Google Scholar 

  36. Owens, D.E. III & Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  Google Scholar 

  37. Mahmoudi, M. et al. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3, 1127–1138 (2011).

    Article  CAS  Google Scholar 

  38. Ehrenberg, M.S., Friedman, A.E., Finkelstein, J.N., Oberdorster, G. & McGrath, J.L. The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30, 603–610 (2009).

    Article  CAS  Google Scholar 

  39. Gessner, A., Lieske, A., Paulke, B. & Muller, R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur. J. Pharm. Biopharm. 54, 165–170 (2002).

    Article  CAS  Google Scholar 

  40. Dobrovolskaia, M.A. et al. Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine (Lond.) 5, 106–117 (2009).

    Article  CAS  Google Scholar 

  41. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  Google Scholar 

  42. Chakraborty, S. et al. Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27, 7722–7731 (2011).

    Article  CAS  Google Scholar 

  43. Dutta, D. et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100, 303–315 (2007).

    Article  CAS  Google Scholar 

  44. Cedervall, T. et al. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem. Int. Ed. Engl. 46, 5754–5756 (2007).

    Article  CAS  Google Scholar 

  45. Lacerda, S.H. et al. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4, 365–379 (2010).

    Article  Google Scholar 

  46. Lindman, S. et al. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 7, 914–920 (2007).

    Article  CAS  Google Scholar 

  47. Mahmoudi, M. et al. Temperature: the 'ignored' factor at the NanoBio interface. ACS Nano 7, 6555–6562 (2013).

    Article  CAS  Google Scholar 

  48. Mahmoudi, M., Laurent, S., Shokrgozar, M.A. & Hosseinkhani, M. Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell 'vision' versus physicochemical properties of nanoparticles. ACS Nano 5, 7263–7276 (2011).

    Article  CAS  Google Scholar 

  49. Monopoli, M.P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    Article  CAS  Google Scholar 

  50. Goppert, T.M. & Muller, R.H. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm. 60, 361–372 (2005).

    Article  Google Scholar 

  51. Labarre, D. et al. Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26, 5075–5084 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Grant support for this study: Deutsche Forschungsgemeinschaft (DFG)-SPP1313, DFG-SFB490/Z3; Bundesministerium für Bildung und Forschung (BMBF)-MRCyte/NanoBEL/DENANA; Zeiss-ChemBioMed; University Mainz Forschungszentrum Immunologie; Research Center for Immunology (FZI); and Stiftung Rheinland-Pfalz (NANOSCH, NanoScreen).

Author information

Authors and Affiliations

Authors

Contributions

S.T., R.H.S., J.K., U.D. and D.D. developed the protocol; D.D., U.D., J.K., A.H., W.S., D.W., S.K.K., S.T. and R.H.S. conducted the experiments, interpreted the data and drafted the manuscript.

Corresponding authors

Correspondence to Stefan Tenzer or Roland H Stauber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Settings for ISOQuant post-processing for label-free quantification. (XLSX 11 kb)

Supplementary Table 2

Integrated summary of corona proteins identified on silica and polystyrene nanoparticles8,12, containing averaged (typical) abundance values (expressed in parts per million of total corona protein) for each nanoparticle type, including human plasma as a reference for future studies. The table also contains information regarding functional annotation, molecular weight and isoelectric points for corona-associated proteins. (XLSX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Docter, D., Distler, U., Storck, W. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat Protoc 9, 2030–2044 (2014). https://doi.org/10.1038/nprot.2014.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.139

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research