Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry

Abstract

The molecular complexity of biopharmaceuticals puts severe demands on the bioanalytical techniques required for their comprehensive structural characterization. Mass spectrometry (MS) has gained importance in the analysis of biopharmaceuticals, taking different complementary approaches ranging from peptide-based sequencing to direct analysis of intact proteins and protein assemblies. In this protocol, we describe procedures optimized to perform the analysis of monoclonal antibodies (mAbs) at the intact protein level under pseudo-native conditions, using native MS. Some of the strengths of native MS in the analysis of biopharmaceuticals are its analysis speed, sensitivity and specificity: for most experiments, the whole protocol requires one working day, whereby tens of samples can be analyzed in a multiplexed manner, making it suitable for high-throughput analysis. This method can be used for different applications such as the analysis of mixtures of mAbs, drug-antibody conjugates and the analysis of mAb post-translational modifications, including the qualitative and quantitative analysis of mAb glycosylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic structure of an IgG1 antibody.
Figure 2: Schematic of two mass spectrometers applied in the native analysis of mAbs.
Figure 3: Typical workflow for native MS analysis of mAbs.
Figure 4: Specific glycan digestion under nondenaturing conditions on intact mAbs.
Figure 5: Detailed images of sample loading before injection.
Figure 6: Qualitative and quantitative analysis of a mixture of four different mAbs.
Figure 7: Detailed mass analysis of heterogeneous glycosylation occurring on an IgG1 Y407E mutant antibody.

Similar content being viewed by others

References

  1. Reichert, J.M. Marketed therapeutic antibodies compendium. MAbs 4, 413–415 (2012).

    Article  Google Scholar 

  2. Harris, L.J., Skaletsky, E. & McPherson, A. Crystallographic structure of an intact IgG1 monoclonal antibody. J. Mol. Biol. 275, 861–872 (1998).

    Article  CAS  Google Scholar 

  3. Saphire, E.O. et al. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    Article  CAS  Google Scholar 

  4. Liu, H., Gaza-Bulseco, G., Faldu, D., Chumsae, C. & Sun, J. Heterogeneity of monoclonal antibodies. J. Pharm. Sci. 97, 2426–2447 (2008).

    Article  CAS  Google Scholar 

  5. Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21, 11–16 (2005).

    Article  CAS  Google Scholar 

  6. Beck, A. et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr. Pharm. Biotechnol. 9, 482–501 (2008).

    Article  CAS  Google Scholar 

  7. Huhn, C., Selman, M.H., Ruhaak, L.R., Deelder, A.M. & Wuhrer, M. IgG glycosylation analysis. Proteomics 9, 882–913 (2009).

    Article  CAS  Google Scholar 

  8. Flynn, G.C., Chen, X., Liu, Y.D., Shah, B. & Zhang, Z. Naturally occurring glycan forms of human immunoglobulins G1 and G2. Mol. Immunol. 47, 2074–2082 (2010).

    Article  CAS  Google Scholar 

  9. Brady, L.J., Martinez, T. & Balland, A. Characterization of nonenzymatic glycation on a monoclonal antibody. Anal. Chem. 79, 9403–9413 (2007).

    Article  CAS  Google Scholar 

  10. Diepold, K. et al. Simultaneous assessment of Asp isomerization and Asn deamidation in recombinant antibodies by LC-MS following incubation at elevated temperatures. PLoS ONE 7, e30295 (2012).

    Article  CAS  Google Scholar 

  11. Liu, H. & May, K. Disulfide bond structures of IgG molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs 4, 17–23 (2012).

    Article  CAS  Google Scholar 

  12. Li, X. et al. Disulfide bond assignment of an IgG1 monoclonal antibody by LC-MS with post-column partial reduction. Anal. Biochem. 436, 93–100 (2013).

    Article  CAS  Google Scholar 

  13. Pace, A.L., Wong, R.L., Zhang, Y.T., Kao, Y.H. & Wang, Y.J. Asparagine deamidation dependence on buffer type, pH, and temperature. J. Pharm. Sci. 102, 1712–1723 (2013).

    Article  CAS  Google Scholar 

  14. Logtenberg, T. Antibody cocktails: next-generation biopharmaceuticals with improved potency. Trends Biotechnol. 25, 390–394 (2007).

    Article  CAS  Google Scholar 

  15. Robak, T. The emerging therapeutic role of antibody mixtures. Expert Opin. Biol. Ther. 13, 953–958 (2013).

    Article  CAS  Google Scholar 

  16. Pro, B. & Perini, G.F. Brentuximab vedotin in Hodgkin′s lymphoma. Expert Opin. Biol. Ther. 12, 1415–1421 (2012).

    Article  CAS  Google Scholar 

  17. Sievers, E.L. & Senter, P.D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    Article  CAS  Google Scholar 

  18. Beck, A., Sanglier-Cianferani, S. & Van Dorsselaer, A. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal. Chem. 84, 4637–4646 (2012).

    Article  CAS  Google Scholar 

  19. Beck, A., Wagner-Rousset, E., Ayoub, D., Van Dorsselaer, A. & Sanglier-Cianferani, S. Characterization of therapeutic antibodies and related products. Anal. Chem. 85, 715–736 (2013).

    Article  CAS  Google Scholar 

  20. Gahoual, R. et al. Rapid and multi-level characterization of trastuzumab using sheathless capillary electrophoresis-tandem mass spectrometry. MAbs 5, 479–490 (2013).

    Article  Google Scholar 

  21. Kang, X., Kutzko, J.P., Hayes, M.L. & Frey, D.D. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems. J. Chromatogr. A 1283, 89–97 (2013).

    Article  CAS  Google Scholar 

  22. Zhang, Z., Pan, H. & Chen, X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom. Rev. 28, 147–176 (2009).

    Article  CAS  Google Scholar 

  23. Sharon, M. & Robinson, C.V. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 76, 167–193 (2007).

    Article  CAS  Google Scholar 

  24. Heck, A.J. Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods 5, 927–933 (2008).

    Article  CAS  Google Scholar 

  25. Konijnenberg, A., Butterer, A. & Sobott, F. Native ion mobility-mass spectrometry and related methods in structural biology. Biochim. Biophys. Acta 1834, 1239–1256 (2013).

    Article  CAS  Google Scholar 

  26. Valliere-Douglass, J.F., McFee, W.A. & Salas-Solano, O. Native intact mass determination of antibodies conjugated with monomethyl Auristatin E and F at interchain cysteine residues. Anal. Chem. 84, 2843–2849 (2012).

    Article  CAS  Google Scholar 

  27. Thompson, N.J., Rosati, S., Rose, R.J. & Heck, A.J. The impact of mass spectrometry on the study of intact antibodies: from post-translational modifications to structural analysis. Chem. Commun. (Camb) 49, 538–548 (2013).

    Article  CAS  Google Scholar 

  28. Zhang, H., Cui, W. & Gross, M.L. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett. (2014); 588, 308–317.

    Article  CAS  Google Scholar 

  29. Rosati, S. et al. Exploring an Orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew. Chem. Int. Ed. Engl. 51, 12992–12996 (2012).

    Article  CAS  Google Scholar 

  30. Rose, R.J., Damoc, E., Denisov, E., Makarov, A. & Heck, A.J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9, 1084–1086 (2012).

    Article  CAS  Google Scholar 

  31. Rosati, S. et al. Qualitative and semiquantitative analysis of composite mixtures of antibodies by native mass spectrometry. Anal. Chem. 84, 7227–7232 (2012).

    Article  CAS  Google Scholar 

  32. Beck, A. & Reichert, J.M. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs 3, 415–416 (2011).

    Article  Google Scholar 

  33. Lynaugh, H., Li, H. & Gong, B. Rapid Fc glycosylation analysis of Fc fusions with IdeS and liquid chromatography mass spectrometry. MAbs 5, 641–645 (2013).

    Article  Google Scholar 

  34. Peters, R.T. et al. Biochemical and functional characterization of a recombinant monomeric factor VIII-Fc fusion protein. J. Thromb. Haemost. 11, 132–141 (2013).

    Article  CAS  Google Scholar 

  35. Chelius, D. et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2, 309–319 (2010).

    Article  Google Scholar 

  36. Rose, R.J. et al. Quantitative analysis of the interaction strength and dynamics of human IgG4 half molecules by native mass spectrometry. Structure 19, 1274–1282 (2011).

    Article  CAS  Google Scholar 

  37. Kukrer, B. et al. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm. Res. 27, 2197–2204 (2010).

    Article  Google Scholar 

  38. Atmanene, C. et al. Extending mass spectrometry contribution to therapeutic monoclonal antibody lead optimization: characterization of immune complexes using noncovalent ESI-MS. Anal. Chem. 81, 6364–6373 (2009).

    Article  CAS  Google Scholar 

  39. Rosati, S. et al. In-depth qualitative and quantitative analysis of composite glycosylation profiles and other micro-heterogeneity on intact monoclonal antibodies by high-resolution native mass spectrometry using a modified Orbitrap. MAbs 5, 917–924 (2013).

    Article  Google Scholar 

  40. Shi, Y., Li, Z., Qiao, Y. & Lin, J. Development and validation of a rapid capillary zone electrophoresis method for determining charge variants of mAb. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 906, 63–68 (2012).

    Article  CAS  Google Scholar 

  41. Xu, W. et al. Method to convert N-terminal glutamine to pyroglutamate for characterization of recombinant monoclonal antibodies. Anal. Biochem. 436, 10–12 (2013).

    Article  CAS  Google Scholar 

  42. Thompson, N.J., Hendriks, L.J.A., de Kruif, J., Throsby, M. & Heck, A.J.R. Complex mixtures of antibodies generated from a single production qualitatively and quantitatively evaluated by native Orbitrap mass spectrometry. MAbs 6, 197–203 (2014).

    Article  Google Scholar 

  43. van den Heuvel, R.H. et al. Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal. Chem. 78, 7473–7483 (2006).

    Article  CAS  Google Scholar 

  44. Sobott, F., Hernandez, H., McCammon, M.G., Tito, M.A. & Robinson, C.V. A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002).

    Article  CAS  Google Scholar 

  45. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. & Whitehouse, C.M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71 (1989).

    Article  CAS  Google Scholar 

  46. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1–8 (1996).

    Article  CAS  Google Scholar 

  47. Almeida, R. et al. Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal. Biochem. 378, 43–52 (2008).

    Article  CAS  Google Scholar 

  48. Zhang, S., Van Pelt, C.K. & Henion, J.D. Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis. Electrophoresis 24, 3620–3632 (2003).

    Article  CAS  Google Scholar 

  49. Hernandez, H. & Robinson, C.V. Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat. Protoc. 2, 715–726 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work, and in particular that of S.R., A.B. and A.J.R.H., was supported in part by Stichting voor de Technische Wetenschappen (STW) (project 10805) and Y.Y. and A.J.R.H. are supported by the ManiFold project, grant agreement number 317371. We further acknowledge support of the PRIME-XS project, grant agreement number 262067, funded by the European Union Seventh Framework Program. The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative, is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Contributions

S.R., Y.Y., A.B. and A.J.R.H. developed the protocols described here, obtained the presented data and wrote the manuscript.

Corresponding author

Correspondence to Albert J R Heck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosati, S., Yang, Y., Barendregt, A. et al. Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry. Nat Protoc 9, 967–976 (2014). https://doi.org/10.1038/nprot.2014.057

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing