Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synchronized fission yeast meiosis using an ATP analog–sensitive Pat1 protein kinase

Abstract

Synchronous cultures are often indispensable for studying meiosis. Here we present an optimized protocol for induction of synchronous meiosis in the fission yeast Schizosaccharomyces pombe. Chemical inactivation of an ATP analog–sensitive form of the Pat1 kinase (pat1-as2) by adding the ATP analog 1-NM-PP1 in G1-arrested cells allows the induction of synchronous meiosis at optimal temperature (25°C). Importantly, this protocol eliminates detrimental effects of elevated temperature (34°C), which is required to inactivate the commonly used temperature-sensitive Pat1 kinase mutant (pat1-114). The addition of the mat-Pc gene to a mat1-M strain further improves chromosome segregation and spore viability. Thus, our protocol offers highly synchronous meiosis at optimal temperature, with most characteristics similar to those of wild-type meiosis. The synchronization protocol can be completed in 5 d (not including strain production, which may take as long as 2 or 3 months).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zygotic and azygotic meiosis in the fission yeast S. pombe.
Figure 2: Synchronous meiosis induced by the inactivation of Pat1.
Figure 3: Sensitivity to ATP analogs of cells expressing Pat1-as2.

Similar content being viewed by others

References

  1. Kerr, G.W., Sarkar, S. & Arumugam, P. How to halve ploidy: lessons from budding yeast meiosis. Cell Mol. Life Sci. 69, 3037–3051 (2012).

    Article  CAS  Google Scholar 

  2. Petronczki, M., Siomos, M.F. & Nasmyth, K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 112, 423–440 (2003).

    Article  CAS  Google Scholar 

  3. Watanabe, Y. Geometry and force behind kinetochore orientation: lessons from meiosis. Nat. Rev. Mol. Cell Biol. 13, 370–382 (2012).

    Article  CAS  Google Scholar 

  4. Phadnis, N., Hyppa, R.W. & Smith, G.R. New and old ways to control meiotic recombination. Trends Genet. 27, 411–421 (2011).

    Article  CAS  Google Scholar 

  5. Gregan, J. et al. High-throughput knockout screen in fission yeast. Nat. Protoc. 1, 2457–2464 (2006).

    Article  CAS  Google Scholar 

  6. Bahler, J., Schuchert, P., Grimm, C. & Kohli, J. Synchronized meiosis and recombination in fission yeast: observations with pat1-114 diploid cells. Curr. Genet. 19, 445–451 (1991).

    Article  CAS  Google Scholar 

  7. Bauer, F., Matsuyama, A., Yoshida, M. & Hermand, D. Determining proteome-wide expression levels using reverse protein arrays in fission yeast. Nat. Protoc. 7, 1830–1835 (2012).

    Article  CAS  Google Scholar 

  8. Ellermeier, C. et al. RNAi and heterochromatin repress centromeric meiotic recombination. Proc. Natl. Acad. Sci. USA 107, 8701–8705 (2010).

    Article  CAS  Google Scholar 

  9. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).

    Article  CAS  Google Scholar 

  10. Harigaya, Y. & Yamamoto, M. Molecular mechanisms underlying the mitosis-meiosis decision. Chromosome Res. 15, 523–537 (2007).

    Article  CAS  Google Scholar 

  11. Nurse, P. Mutants of the fission yeast Schizosaccharomyces pombe which alter the shift between cell proliferation and sporulation. Mol. Gen. Genet. 198, 497–502 (1985).

    Article  Google Scholar 

  12. Beach, D., Rodgers, L. & Gould, J. ran1+ controls the transition from mitotic division to meiosis in fission yeast. Curr. Genet. 10, 297–311 (1985).

    Article  CAS  Google Scholar 

  13. Iino, Y. & Yamamoto, M. Mutants of Schizosaccharomyces pombe which sporulate in the haploid state. Mol. Gen. Genet. 198, 416–421 (1985).

    Article  CAS  Google Scholar 

  14. Iino, Y. & Yamamoto, M. Negative control for the initiation of meiosis in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 82, 2447–2451 (1985).

    Article  CAS  Google Scholar 

  15. Watanabe, Y. & Yamamoto, M. S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78, 487–498 (1994).

    Article  CAS  Google Scholar 

  16. Watanabe, Y., Shinozaki-Yabana, S., Chikashige, Y., Hiraoka, Y. & Yamamoto, M. Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature 386, 187–190 (1997).

    Article  CAS  Google Scholar 

  17. Yamamoto, A. & Hiraoka, Y. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J. 22, 2284–2296 (2003).

    Article  CAS  Google Scholar 

  18. Guerra-Moreno, A., Alves-Rodrigues, I., Hidalgo, E. & Ayte, J. Chemical genetic induction of meiosis in Schizosaccharomyces pombe. Cell Cycle 11, 1621–1625 (2012).

    Article  CAS  Google Scholar 

  19. Kakui, Y., Sato, M., Tanaka, K. & Yamamoto, M. A novel fission yeast mei4 mutant that allows efficient synchronization of telomere dispersal and the first meiotic division. Yeast 28, 467–479 (2011).

    Article  CAS  Google Scholar 

  20. Cipak, L., Hyppa, R.W., Smith, G.R. & Gregan, J. ATP analog-sensitive Pat1 protein kinase for synchronous fission yeast meiosis at physiological temperature. Cell Cycle 11, 1626–1633 (2012).

    Article  CAS  Google Scholar 

  21. Gregan, J. et al. Construction of conditional analog-sensitive kinase alleles in the fission yeast Schizosaccharomyces pombe. Nat. Protoc. 2, 2996–3000 (2007).

    Article  CAS  Google Scholar 

  22. Hyppa, R.W., Fowler, K.R., Cipak, L., Gregan, J. & Smith, G.R. DNA intermediates of meiotic recombination in synchronous S. pombe at optimal temperature. Nucl. Acids Res. 10.1093/nar/gkt861 (2013).

  23. Tachibana-Konwalski, K. Pat(ting) boosts meiosis. Cell Cycle 11, 1876–1877 (2012).

    Article  CAS  Google Scholar 

  24. Nosek, J. & Tomaska, L. A new tool for an old problem: synchronizing fission yeast cells during meiosis using an ATP analog-sensitive protein kinase. Cell Cycle 11, 1755–1756 (2012).

    Article  CAS  Google Scholar 

  25. Perez-Hidalgo, L. & Moreno, S. Chemical inactivation of Pat1: a novel approach to synchronize meiosis. Cell Cycle 11, 1875 (2012).

    Article  CAS  Google Scholar 

  26. Murakami, H. & Aiba, H. Another way to induce synchronous meiosis. Cell Cycle 11, 1874 (2012).

    Article  CAS  Google Scholar 

  27. Wu, P.Y. Insights from a new tool for meiotic induction in fission yeast. Cell Cycle 11, 2050 (2012).

    Article  CAS  Google Scholar 

  28. Sipiczki, M. & Ferenczy, L. Protoplast fusion of Schizosaccharomyces pombe auxotrophic mutants of identical mating-type. Mol. Gen. Genet. 151, 77–81 (1977).

    Article  CAS  Google Scholar 

  29. Egel, R. & Egel-Mitani, M. Premeiotic DNA synthesis in fission yeast. Exp. Cell Res. 88, 127–134 (1974).

    Article  CAS  Google Scholar 

  30. Cromie, G.A. et al. A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. PLoS Genet. 3, e141 (2007).

    Article  Google Scholar 

  31. Cromie, G.A. et al. Single Holliday junctions are intermediates of meiotic recombination. Cell 127, 1167–1178 (2006).

    Article  CAS  Google Scholar 

  32. McLeod, M., Stein, M. & Beach, D. The product of the mei3+ gene, expressed under control of the mating-type locus, induces meiosis and sporulation in fission yeast. EMBO J. 6, 729–736 (1987).

    Article  CAS  Google Scholar 

  33. Yamamoto, T.G., Chikashige, Y., Ozoe, F., Kawamukai, M. & Hiraoka, Y. Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast. J. Cell Sci. 117, 3875–3886 (2004).

    Article  CAS  Google Scholar 

  34. Funaya, C. et al. Transient structure associated with the spindle pole body directs meiotic microtubule reorganization in S. pombe. Curr. Biol. 22, 562–574 (2012).

    Article  CAS  Google Scholar 

  35. Grallert, A. et al. Centrosomal MPF triggers the mitotic and morphogenetic switches of fission yeast. Nat. Cell Biol. 15, 88–95 (2013).

    Article  CAS  Google Scholar 

  36. Tay, Y.D., Patel, A., Kaemena, D.F. & Hagan, I.M. Mutation of a conserved residue enhances sensitivity of analogue sensitized kinases to generate a novel approach for mitotic studies in fission yeast. J. Cell Sci. 126 (Part 21): 5052–5061 (2013).

    Article  CAS  Google Scholar 

  37. Kawashima, S.A., Takemoto, A., Nurse, P. & Kapoor, T.M. Analyzing fission yeast multidrug resistance mechanisms to develop a genetically tractable model system for chemical biology. Chem. Biol. 19, 893–901 (2012).

    Article  CAS  Google Scholar 

  38. Iino, Y., Sugimoto, A. & Yamamoto, M. S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III-like RNase. EMBO J. 10, 221–226 (1991).

    Article  CAS  Google Scholar 

  39. Spirek, M. et al. S. pombe genome deletion project: an update. Cell Cycle 9, 2399–2402 (2010).

    Article  CAS  Google Scholar 

  40. Imai, Y. & Yamamoto, M. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev. 8, 328–338 (1994).

    Article  CAS  Google Scholar 

  41. Sabatinos, S.A. & Forsburg, S.L. Measuring DNA content by flow cytometry in fission yeast. Methods Mol. Biol. 521, 449–461 (2009).

    Article  CAS  Google Scholar 

  42. Lu, B.C. Dark dependence of meiosis at elevated temperatures in the basidiomycete Coprinus lagopus. J. Bacteriol. 111, 833–834 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Malik, C.P. Effect of variations in temperature on meiosis in Gagea reticulata schultes. Nature 187, 805–806 (1960).

    Article  CAS  Google Scholar 

  44. Francis, K.E. et al. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 3913–3918 (2007).

    Article  CAS  Google Scholar 

  45. Loidl, J. Effects of elevated temperature on meiotic chromosome synapsis in Allium ursinum. Chromosoma 97, 449–458 (1989).

    Article  Google Scholar 

  46. Shimanuki, M. et al. Two-step, extensive alterations in the transcriptome from G0 arrest to cell division in Schizosaccharomyces pombe. Genes Cells 12, 677–692 (2007).

    Article  CAS  Google Scholar 

  47. Takeda, K. et al. Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proc. Natl. Acad. Sci. USA 107, 3540–3545 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Austrian Science Fund grants P23609 and P21437 and by the Slovak Research and Development Agency under contract nos. APVV-0111-12 and APVV-0334-12. Part of this research was supported by the US National Institutes of Health grant no. GM032194 to G.R.S. L.C. was supported by the (European Community's) Seventh Framework Programme (FP7/2007–2013) under grant agreement no. PERG07-GA-2010-268167. J.G. was supported by the (European Community's) Seventh Framework Programme (FP7/2007–2013) under grant agreement no. PCIG11-GA-2012-322300. S.P. was supported by A European Molecular Biology Organization (EMBO) long-term fellowship. We thank J. Ayte, A. Yamamoto, C. Zhang, H. Murakami, A. Lorenz and Z. Benko for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and G.R.S. designed the experiments and wrote the manuscript. S.P., L.C. and R.W.H. performed the experiments and contributed to the writing of the manuscript. S.P., L.C. and R.W.H. contributed equally. Both J.G. and G.R.S. are corresponding authors.

Corresponding authors

Correspondence to Gerald R Smith or Juraj Gregan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cipak, L., Polakova, S., Hyppa, R. et al. Synchronized fission yeast meiosis using an ATP analog–sensitive Pat1 protein kinase. Nat Protoc 9, 223–231 (2014). https://doi.org/10.1038/nprot.2014.013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2014.013

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing