Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments

Abstract

The success of single-molecule (SM) experiments critically depends on the functional immobilization of the biomolecule(s) to be studied. With the continuing trend of combining SM fluorescence with SM force experiments, methods are required that are suitable for both types of measurements. We describe a general protocol for the site-specific and covalent coupling of any type of biomolecule that can be prepared with a free thiol group. The protocol uses a poly(ethylene glycol) (PEG) spacer, which carries an N-hydroxy succinimide (NHS) group on one end and a maleimide group on the other. After reacting the NHS group with an amino-functionalized surface, the relatively stable but highly reactive maleimide group allows the coupling of the biomolecule. This protocol provides surfaces with low fluorescence background, low nonspecific binding and a large number of reactive sites. Surfaces containing immobilized biomolecules can be obtained within 6 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An overview of the immobilization procedure.
Figure 2: An overview of the protocol.
Figure 3: An example of an experiment carried out to verify the site-specific immobilization of an enzyme.

Similar content being viewed by others

References

  1. Ishijima, A. et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92, 161–171 (1998).

    Article  CAS  Google Scholar 

  2. Lang, M.J., Fordyce, P.M., Engh, A.M., Neuman, K.C. & Block, S.M. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat. Methods 1, 133–139 (2004).

    Article  CAS  Google Scholar 

  3. Kodama, T., Ohtani, H., Arakawa, H. & Ikai, A. Mechanical perturbation-induced fluorescence change of green fluorescent protein. Appl. Phys. Lett. 86, 043901 (2005).

    Article  Google Scholar 

  4. Owen, R.J., Heyes, C.D., Knebel, D., Rocker, C. & Nienhaus, G.U. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy. Biopolymers 82, 410–414 (2006).

    Article  CAS  Google Scholar 

  5. Kufer, S.K., Puchner, E.M., Gumpp, H., Liedl, T. & Gaub, H.E. Single-molecule cut-and-paste surface assembly. Science 319, 594–596 (2008).

    Article  CAS  Google Scholar 

  6. Gumpp, H., Stahl, S.W., Strackharn, M., Puchner, E.M. & Gaub, H.E. Ultrastable combined atomic force and total internal fluorescence microscope. Rev. Sci. Instrum. 80, 063704 (2009).

    Article  CAS  Google Scholar 

  7. Puchner, E.M., Kufer, S.K., Strackharn, M., Stahl, S.W. & Gaub, H.E. Nanoparticle self-assembly on a DNA-scaffold written by single-molecule cut-and-paste. Nano Lett. 8, 3692–3695 (2008).

    Article  CAS  Google Scholar 

  8. Kufer, S.K. et al. Optically monitoring the mechanical assembly of single molecules. Nat. Nanotechnol. 4, 45–49 (2009).

    Article  CAS  Google Scholar 

  9. Gumpp, H. et al. Triggering enzymatic activity with force. Nano Lett. 9, 3290–3295 (2009).

    Article  CAS  Google Scholar 

  10. Hinterdorfer, P. & Dufrene, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    Article  CAS  Google Scholar 

  11. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  CAS  Google Scholar 

  12. Berquand, A. et al. Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy. Langmuir 21, 5517–5523 (2005).

    Article  CAS  Google Scholar 

  13. Mather, B.D., Viswanathan, K., Miller, K.M. & Long, T.E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31, 487–531 (2006).

    Article  CAS  Google Scholar 

  14. Oesterhelt, F., Rief, M. & Gaub, H.E. Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. New J. Phys. 1, 6.1–6.11 (1999).

    Article  Google Scholar 

  15. Morfill, J. et al. Affinity-matured recombinant antibody fragments analyzed by single-molecule force spectroscopy. Biophys. J. 93, 3583–3590 (2007).

    Article  CAS  Google Scholar 

  16. Jeon, S.I., Lee, J.H., Andrade, J.D. & Degennes, P.G. Protein surface interactions in the presence of polyethylene oxide. 1. Simplified theory. J. Colloid Interface Sci. 142, 149–158 (1991).

    Article  CAS  Google Scholar 

  17. Sofia, S.J. & Merrill, E.W. Protein adsorption on poly(ethylene oxide)-grafted silicon surfaces. In Poly(ethylene glycol) Chemistry and Biological Applications (eds. Harris J.M. & Zalipsky, S.) Ch. 22, 342–360 (ACS Symposium Series, Washington, D.C., 1997).

  18. Alcantar, N.A., Aydil, E.S. & Israelachvili, J.N. Polyethylene glycol-coated biocompatible surfaces. J. Biomed. Mater. Res. 51, 343–351 (2000).

    Article  CAS  Google Scholar 

  19. Ebner, A., Hinterdorfer, P. & Gruber, H.J. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107, 922–927 (2007).

    Article  CAS  Google Scholar 

  20. Canalle, L.A., Löwik, D.W. & van Hest, J.C. Polypeptide-polymer bioconjugates. Chem. Soc. Rev. 39, 329–353 (2010).

    Article  CAS  Google Scholar 

  21. Medintz, I.L., Uyeda, H.T., Goldman, E.R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005).

    Article  CAS  Google Scholar 

  22. Rusmini, F., Zhong, Z. & Feijen, J. Protein immobilization strategies for protein biochips. Biomacromolecules 8, 1775–1789 (2007).

    Article  CAS  Google Scholar 

  23. Collings, A.F. & Caruso, F. Biosensors: recent advances. Rep. Prog. Phys. 60, 1397–1445 (1997).

    Article  CAS  Google Scholar 

  24. Nicu, L. & Leichle, T. Biosensors and tools for surface functionalization from the macro-to the nanoscale: The way forward. J. Appl. Phys. 104, 111101 (2008).

    Article  Google Scholar 

  25. Burns, J.A., Butler, J.C., Moran, J. & Whitesides, G.M. Selective reduction of disulfides by Tris(2-carboxyethyl)phosphine. J. Org. Chem. 56, 2648–2650 (1991).

    Article  CAS  Google Scholar 

  26. Blank, K., Morfill, J. & Gaub, H.E. Site-specific immobilization of genetically engineered variants of Candida antarctica lipase B. Chembiochem 7, 1349–1351 (2006).

    Article  CAS  Google Scholar 

  27. Morfill, J. et al. Force-based analysis of multidimensional energy landscapes: application of dynamic force spectroscopy and steered molecular dynamics simulations to an antibody fragment-peptide complex. J. Mol. Biol. 381, 1253–1266 (2008).

    Article  CAS  Google Scholar 

  28. Velonia, K., Rowan, A.E. & Nolte, R.J.M. Lipase polystyrene giant amphiphiles. J. Am. Chem. Soc. 124, 4224–4225 (2002).

    Article  CAS  Google Scholar 

  29. Hermanson, G.T. Bioconjugate Techniques (Elsevier, London, 2008).

  30. Knappik, A. & Plückthun, A. An improved affinity tag based on the FLAG peptide for the detection and purification of recombinant antibody fragments. Biotechniques 17, 754–761 (1994).

    CAS  PubMed  Google Scholar 

  31. Zahnd, C. et al. Directed in vitro evolution and crystallographic analysis of a peptide-binding single chain antibody fragment (scFv) with low picomolar affinity. J. Biol. Chem. 279, 18870–18877 (2004).

    Article  CAS  Google Scholar 

  32. Kühner, F., Morfill, J., Neher, R.A., Blank, K. & Gaub, H.E. Force-induced DNA slippage. Biophys. J. 92, 2491–2497 (2007).

    Article  Google Scholar 

  33. Morfill, J. et al. B-S transition in short oligonucleotides. Biophys. J. 93, 2400–2409 (2007).

    Article  CAS  Google Scholar 

  34. Neuert, G., Albrecht, C., Pamir, E. & Gaub, H.E. Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Lett. 580, 505–509 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hermann E. Gaub and all members of the Gaub lab for using the protocol in various SM experiments and for many valuable discussions leading to continuous improvements of the protocol. This work was supported by the German Research Foundation (DFG) and the European Union.

Author information

Authors and Affiliations

Authors

Contributions

T.N. and G.N. developed the silanization protocols; J.L.Z. and K.B. developed the coupling procedures for the biomolecules; G.N. and J.L.Z. carried out SM experiments; and J.L.Z. and K.B. wrote the paper.

Corresponding author

Correspondence to Kerstin Blank.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, J., Nicolaus, T., Neuert, G. et al. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments. Nat Protoc 5, 975–985 (2010). https://doi.org/10.1038/nprot.2010.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2010.49

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing