Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood

Abstract

Establishment of robust xenograft models is critical to studying human hematopoiesis in a physiologic setting. Using a recently developed immunodeficient mouse strain, we have established long-term multilineage human grafts and demonstrated their serially transplantability using limited numbers of purified human hematopoietic stem cells (HSCs). Herein, we describe our protocol for the isolation of human HSC (Lin-CD34+CD38−CD90+) from umbilical cord blood (CB) as well as the xenotransplantation system that allows stable engraftment of human hematopoietic cells with as few as ten HSCs. Isolation of CB mononuclear cells requires 2–3 h, and cells may be cryopreserved before transplantation. Isolation of HSC requires approximately 2–3 h, and transplantation requires 1 h. Short-term and long-term engraftment is assessed 4–6 weeks and 10–12 weeks post-transplantation, respectively, with preparation and analysis time requiring 4–8 h at each time point.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gating strategy for FACS-purification of human CB HSCs and MPP.
Figure 2: Engraftment of human CB HSCs in NSG mice.
Figure 3: BM engraftment of human CB HSC in primary and secondary recipients.
Figure 4: Flow chart for HSC transplantation and assessment of engraftment.

Similar content being viewed by others

References

  1. Bryder, D., Rossi, D.J. & Weissman, I.L. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169, 338–346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Sutherland, H.J., Eaves, C.J., Eaves, A.C., Dragowska, W. & Lansdorp, P.M. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro . Blood 74, 1563–1570 (1989).

    CAS  PubMed  Google Scholar 

  5. Metcalf, D. Detection and analysis of human granulocyte—monocyte precursors using semi-solid cultures. Clin. Haematol. 8, 263–285 (1979).

    CAS  PubMed  Google Scholar 

  6. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med. 2, 1329–1337 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia, M. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gan, O.I., Murdoch, B., Larochelle, A. & Dick, J.E. Differential maintenance of primitive human SCID-repopulating cells, clonogenic progenitors, and long-term culture-initiating cells after incubation on human bone marrow stromal cells. Blood 90, 641–650 (1997).

    CAS  PubMed  Google Scholar 

  9. Shultz, L.D., Ishikawa, F. & Greiner, D.L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Mosier, D.E., Gulizia, R.J., Baird, S.M. & Wilson, D.B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 335, 256–259 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255, 1137–1141 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. McCune, J.M. et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Murray, L. et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin-subpopulation from mobilized peripheral blood. Blood 85, 368–378 (1995).

    CAS  PubMed  Google Scholar 

  14. Peault, B., Weissman, I. & Baum, C. Analysis of candidate human blood stem cells in 'humanized' immune-deficiency SCID mice. Leukemia 7 (Suppl 2): S98–S101 (1993).

    PubMed  Google Scholar 

  15. Hesselton, R.M. et al. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J. Infect. Dis. 172, 974–982 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Dick, J.E., Guenechea, G., Gan, O.I. & Dorrell, C. In vivo dynamics of human stem cell repopulation in NOD/SCID mice. Ann. N.Y. Acad. Sci. 938, 184–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Glimm, H. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J. Clin. Invest. 107, 199–206 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorshkind, K., Pollack, S.B., Bosma, M.J. & Phillips, R.A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J. Immunol. 134, 3798–3801 (1985).

    CAS  PubMed  Google Scholar 

  19. Greiner, D.L. et al. Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. Am. J. Pathol. 146, 888–902 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Shultz, L.D. et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J. Immunol. 154, 180–191 (1995).

    CAS  PubMed  Google Scholar 

  21. Takenaka, K. et al. Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells. Nat. Immunol. 8, 1313–1323 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ito, M. et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100, 3175–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Shultz, L.D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood 106, 1565–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamieson, C.H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Hosen, N. et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl. Acad. Sci. USA 104, 11008–11013 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prince, M.E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ishikawa, F. et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Majeti, R., Park, C.Y. & Weissman, I.L. Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1, 635–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pearson, T., Greiner, D.L. & Shultz, L.D. Humanized SCID mouse models for biomedical research. Curr. Top Microbiol. Immunol. 324, 25–51 (2008).

    CAS  PubMed  Google Scholar 

  32. Mayani, H. & Lansdorp, P.M. Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood 83, 2410–2417 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Libuse Jerabek and Theresa Storm for their lab management expertise and Adriane Mosley for animal husbandry. This research is supported by National Institutes of Health/National Cancer Institute grants R01CA86017 to I.L.W. and KO8CA1295470 to C.Y.P. R.M. is supported by the Walter and Idun Y. Berry Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.Y.P. and R.M. contributed equally to this work.

Corresponding author

Correspondence to Christopher Y Park.

Ethics declarations

Competing interests

C.Y.P and R.M. have no conflicts of interest to disclose. I.L.W. was a member of the scientific advisory board of Amgen and owns significant Amgen stock. I.L.W. cofounded and consulted for Systemix, is a cofounder and director of Stem Cells Inc., and cofounded Cellerant, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, C., Majeti, R. & Weissman, I. In vivo evaluation of human hematopoiesis through xenotransplantation of purified hematopoietic stem cells from umbilical cord blood. Nat Protoc 3, 1932–1940 (2008). https://doi.org/10.1038/nprot.2008.194

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2008.194

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing