Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Analyzing grooming microstructure in neurobehavioral experiments

Abstract

Grooming is a commonplace, robust behavior in rodent species. It has been shown to be highly sensitive to a number of experimental factors, making it an ideal target for manipulation. The complex patterning of grooming in rodents, which usually proceeds in a cephalo-caudal direction and involves several distinct stages, can be dissected into its constituent parts and microstructures. Several grooming patterning analysis methods are described in the protocol that allow for an assessment of this behavior based on measurements of grooming activity and its sequencing. Additionally, grooming can be evaluated in reference to the regional distribution and syntax in which it occurs. Owing to the ever-increasing number of rodent models that have strong grooming phenotypes, this high-throughput in-depth analysis is becoming crucial for biomedical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syntactic grooming chain pattern in mice (adapted from ref.
Figure 2
Figure 3: Example of drug-evoked alterations in grooming sequencing in rats detected by the syntactic chain analysis approach.
Figure 4: Potential applications of grooming activity and patterning analyses to behavioral research.

Similar content being viewed by others

References

  1. Bolles, R.C. Grooming behavior in the rat. J. Comp. Physiol. Psychol. 53, 306–310 (1960).

    Article  CAS  Google Scholar 

  2. Spruijt, B.M., van Hooff, J.A. & Gispen, W.H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    Article  CAS  Google Scholar 

  3. Kalueff, A.V. & Tuohimaa, P. Contrasting grooming phenotypes in C57Bl/6 and 129S1/SvImJ mice. Brain Res. 1028, 75–82 (2004).

    Article  CAS  Google Scholar 

  4. Kalueff, A.V. & Tuohimaa, P. Grooming analysis algorithm for neurobehavioural stress research. Brain Res. 13, 151–158 (2004).

    Google Scholar 

  5. Spencer, S.J., Mouihate, A. & Pittman, Q.J. Peripheral inflammation exacerbates damage after global ischemia independently of temperature and acute brain inflammation. Stroke 38, 1570–1577 (2007).

    Article  CAS  Google Scholar 

  6. Qi, X., Lin, W., Li, J., Pan, Y. & Wang, W. The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress. Behav. Brain Res. 175, 233–240 (2006).

    Article  CAS  Google Scholar 

  7. McFarlane, H.G. et al. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. (in the press).

  8. Kalueff, A.V., Lou, Y.R., Laaksi, I. & Tuohimaa, P. Increased grooming behavior in mice lacking vitamin D receptors. Physiol. Behav. 82, 405–409 (2004).

    Article  CAS  Google Scholar 

  9. Kallnik, M. et al. Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6J mice. Mamm. Genome 18, 173–186 (2007).

    Article  Google Scholar 

  10. Pekcec, A., Muhlenhoff, M., Gerardy-Schahn, R. & Potschka, H. Impact of the PSA-NCAM system on pathophysiology in a chronic rodent model of temporal lobe epilepsy. Neurobiol. Dis. 27, 54–66 (2007).

    Article  CAS  Google Scholar 

  11. Spruijt, B.M., De Graan, P.N., Eberle, A.N. & Gispen, W.H. Comparison of structural requirements of alpha-MSH and ACTH for inducing excessive grooming and pigment dispersion. Peptides 6, 1185–1189 (1985).

    Article  CAS  Google Scholar 

  12. Spruijt, B.M., Welbergen, P., Brakkee, J. & Gispen, W.H. Behavioral changes in ACTH-(1-24)-induced excessive grooming in aging rats. Neurobiol. Aging 8, 265–270 (1987).

    Article  CAS  Google Scholar 

  13. Kalueff, A.V. & Tuohimaa, P. Mouse grooming microstructure is a reliable anxiety marker bidirectionally sensitive to GABAergic drugs. Eur. J. Pharmacol. 508, 147–153 (2005).

    Article  CAS  Google Scholar 

  14. Crawley, J.N. & Moody, T.W. Anxiolytics block excessive grooming behavior induced by ACTH1-24 and bombesin. Brain Res. Bull. 10, 399–401 (1983).

    Article  CAS  Google Scholar 

  15. Moody, T.W., Merali, Z. & Crawley, J.N. The effects of anxiolytics and other agents on rat grooming behavior. Ann. NY Acad. Sci. 525, 281–290 (1988).

    Article  CAS  Google Scholar 

  16. Greer, J.M. & Capecchi, M.R. Hoxb8 is required for normal grooming behavior in mice. Neuron 33, 23–34 (2002).

    Article  CAS  Google Scholar 

  17. Welch, M.J. et al. Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature 448, 894–900 (2007).

    Article  CAS  Google Scholar 

  18. Yamamoto, T. & Ueki, S. Behavioral effects of 2,5-dimethoxy-4-methylamphetamine (DOM) in rats and mice. Eur. J. Pharmacol. 32, 156–162 (1975).

    Article  CAS  Google Scholar 

  19. File, S.E., Mabbutt, P.S. & Walker, J.H. Comparison of adaptive responses in familiar and novel environments: modulatory factors. Ann. NY Acad. Sci. 525, 69–79 (1988).

    Article  CAS  Google Scholar 

  20. Fentress, J.C. & Stilwell, F.P. Letter: grammar of a movement sequence in inbred mice. Nature 244, 52–53 (1973).

    Article  CAS  Google Scholar 

  21. Fentress, J.C. Development of grooming in mice with amputated forelimbs. Science 179, 704–705 (1973).

    Article  CAS  Google Scholar 

  22. Fentress, J.C. The tonic hypothesis and the patterning of behavior. Ann. NY Acad. Sci. 290, 370–395 (1977).

    Article  CAS  Google Scholar 

  23. Berridge, K.C. & Fentress, J.C. Deafferentation does not disrupt natural rules of action syntax. Behav. Brain Res. 23, 69–76 (1987).

    Article  CAS  Google Scholar 

  24. Berridge, K.C., Fentress, J.C. & Parr, H. Natural syntax rules control action sequence of rats. Behav. Brain Res. 23, 59–68 (1987).

    Article  CAS  Google Scholar 

  25. Berridge, K.C. & Aldridge, J.W. Super-stereotypy II: enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse 37, 205–215 (2000).

    Article  CAS  Google Scholar 

  26. Berridge, K.C. & Aldridge, J.W. Super-stereotypy I: enhancement of a complex movement sequence by systemic dopamine D1 agonists. Synapse 37, 194–204 (2000).

    Article  CAS  Google Scholar 

  27. Berridge, K.C., Aldridge, J.W., Houchard, K.R. & Zhuang, X. Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol. 3, 4 (2005).

    Article  Google Scholar 

  28. Audet, M.C., Goulet, S. & Dore, F.Y. Repeated subchronic exposure to phencyclidine elicits excessive atypical grooming in rats. Behav. Brain Res. 167, 103–110 (2006).

    Article  CAS  Google Scholar 

  29. Komorowska, J. & Pellis, S.M. Regulatory mechanisms underlying novelty-induced grooming in the laboratory rat. Behav. Processes 67, 287–293 (2004).

    Article  Google Scholar 

  30. Kobayashi, M. et al. Electrophysiological analysis of rhythmic jaw movements in the freely moving mouse. Physiol. Behav. 75, 377–385 (2002).

    Article  CAS  Google Scholar 

  31. Matell, M.S., Berridge, K.C. & Wayne Aldridge, J. Dopamine D1 activation shortens the duration of phases in stereotyped grooming sequences. Behav. Processes 71, 241–249 (2006).

    Article  Google Scholar 

  32. Kalueff, A.V. & Tuohimaa, P. The grooming analysis algorithm discriminates between different levels of anxiety in rats: potential utility for neurobehavioural stress research. J. Neurosci. Methods 143, 169–177 (2005).

    Article  Google Scholar 

  33. Aldridge, J.W. & Berridge, K.C. Coding of serial order by neostriatal neurons: a 'natural action' approach to movement sequence. J. Neurosci. 18, 2777–2787 (1998).

    Article  CAS  Google Scholar 

  34. Aldridge, J.W., Berridge, K.C. & Rosen, A.R. Basal ganglia neural mechanisms of natural movement sequences. Can. J. Physiol. Pharmacol. 82, 732–739 (2004).

    Article  CAS  Google Scholar 

  35. Aldridge, J.W. Syntactic grooming in the rat and its neural mechanisms. in The Behaviour of the Laboratory Rat: A Handbook with Tests (eds. Whishaw, I. & Kolb, B.) 141–149 (MIT Press, Cambridge, MA, 2004).

    Chapter  Google Scholar 

  36. Cromwell, H.C. & Berridge, K.C. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J. Neurosci. 16, 3444–3458 (1996).

    Article  CAS  Google Scholar 

  37. Berridge, K.C. Progressive degradation of serial grooming chains by descending decerebration. Behav. Brain Res. 33, 241–253 (1989).

    Article  CAS  Google Scholar 

  38. Berridge, K.C. & Whishaw, I.Q. Cortex, striatum and cerebellum: control of serial order in a grooming sequence. Exp. Brain Res. 90, 275–290 (1992).

    Article  CAS  Google Scholar 

  39. Cromwell, H.C., Berridge, K.C., Drago, J. & Levine, M.S. Action sequencing is impaired in D1A-deficient mutant mice. Eur. J. Neurosci. 10, 2426–2432 (1998).

    Article  CAS  Google Scholar 

  40. Deacon, R.M. Housing, husbandry and handling of rodents for behavioral experiments. Nat. Protoc. 1, 936–946 (2006).

    Article  Google Scholar 

  41. Kalueff, A.V. & Tuohimaa, P. Contrasting grooming phenotypes in three mouse strains markedly different in anxiety and activity (129S1, BALB/c and NMRI). Behav. Brain Res. 160, 1–10 (2005).

    Article  Google Scholar 

  42. Burne, T.H., Johnston, A.N., McGrath, J.J. & Mackay-Sim, A. Swimming behaviour and post-swimming activity in vitamin D receptor knockout mice. Brain Res. Bull. 69, 74–78 (2006).

    Article  CAS  Google Scholar 

  43. Dunn, A.J., Berridge, C.W., Lai, Y.I. & Yachabach, T.L. CRF-induced excessive grooming behavior in rats and mice. Peptides 8, 841–844 (1987).

    Article  CAS  Google Scholar 

  44. Kalueff, A.V., Lou, Y.R., Laaksi, I. & Tuohimaa, P. Abnormal behavioral organization of grooming in mice lacking the vitamin D receptor gene. J. Neurogenet. 19, 1–24 (2005).

    Article  CAS  Google Scholar 

  45. Molloy, A.G. & Waddington, J.L. Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology 82, 409–410 (1984).

    Article  CAS  Google Scholar 

  46. Molloy, A.G., Aronstam, R.S. & Buccafusco, J.J. Selective antagonism by clonidine of the stereotyped and non-stereotyped motor activity elicited by atropine. Pharmacol. Biochem. Behav. 25, 985–988 (1986).

    Article  CAS  Google Scholar 

  47. Waddington, J.L., Molloy, A.G., O'Boyle, K.M. & Mashurano, M. Motor consequences of D-1 dopamine receptor stimulation and blockade. Clin. Neuropharmacol. 9 (suppl. 4): 20–22 (1986).

    PubMed  Google Scholar 

  48. Molloy, A.G. & Waddington, J.L. Assessment of grooming and other behavioural responses to the D-1 dopamine receptor agonist SK & F 38393 and its R- and S-enantiomers in the intact adult rat. Psychopharmacology 92, 164–168 (1987).

    Article  CAS  Google Scholar 

  49. Crawley, J.N. What's Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice (Wiley-Liss, New York, NY, 2000).

    Google Scholar 

  50. Hill, R.A. et al. Estrogen deficient male mice develop compulsive behavior. Biol. Psychiatry 61, 359–366 (2007).

    Article  CAS  Google Scholar 

  51. Wurbel, H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 24, 207–211 (2001).

    Article  CAS  Google Scholar 

  52. Wolfer, D.P. et al. Laboratory animal welfare: cage enrichment and mouse behaviour. Nature 432, 821–822 (2004).

    Article  CAS  Google Scholar 

  53. Kalueff, A.V., Keisala, T., Minasyan, A. & Tuohimaa, P. Influence of paternal genotypes on F1 behaviors: lessons from several mouse strains. Behav. Brain Res. 177, 45–50 (2007).

    Article  CAS  Google Scholar 

  54. Enginar, N., Hatipoglu, I. & Firtina, M. Evaluation of the effect of amitriptyline and fluoxetine on anxiety using the grooming analysis algorithm in rats. Proc. Stress Behav. Conf. 10, 18–19 (2007).

    Google Scholar 

  55. Spasojevic, N., Gavrilovic, L., Varagic, V.V. & Dronjak, S. Effects of chronic diazepam treatments on behavior of individually housed rats. Arch. Biol. Sci. 59, 113–117 (2007).

    Article  Google Scholar 

  56. Kalueff, A.V., Wheaton, M. & Murphy, D.L. What's wrong with my mouse model? Advances and strategies in animal modeling of anxiety and depression. Behav. Brain Res. 179, 1–18 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Medical Research Foundation (EVO) of Tampere University Hospital (Finland), the Intramural Research Program of the National Institute of Mental Health (USA) and NARSAD YI Award (to A.V.K.). We thank Professor Kent Berridge (University of Michigan, USA) for permission to use grooming syntax diagram and for his valuable comments on earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V Kalueff.

Supplementary information

Supplementary Video 1

Non-chain rat grooming (MOV 214 kb)

Supplementary Video 2

Syntactic chain grooming in rats (Example 1) (MOV 508 kb)

Supplementary Video 3

Syntactic chain grooming in rats (Example 2) (MOV 574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalueff, A., Aldridge, J., LaPorte, J. et al. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2, 2538–2544 (2007). https://doi.org/10.1038/nprot.2007.367

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.367

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing