Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries

Abstract

Signaling complexes usually involve multidomain proteins containing catalytic domains and peptide recognition modules (PRMs), which mediate protein–protein interactions and assemble complexes by binding to ligands containing a core sequence motif. Concomitant to large-scale physical interaction screening, considerable effort has been devoted toward the elucidation of consensus profiles for common PRMs. We describe herein a robust and proven protocol to generate consensus profiles for PRMs using phage-displayed peptide libraries. The initial phase of the protocol entails the cloning, expression and purification of PRMs as fusion proteins, in addition to the construction of highly diverse phage-displayed peptide libraries. The affinity selection process described thereafter enables a single researcher to efficiently probe the recognition profiles of numerous PRMs in a 1 week time period.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A flow diagram of the experimental components required in identifying consensus profiles for PRMs.
Figure 2: Cloning strategy to generate GST-PRM fusions.
Figure 3: Phagemid vectors designed for peptide display.
Figure 4: Mutagenesis for library construction.
Figure 5: Affinity selection process.
Figure 6: Consensus profile identification for the human ERBIN PDZ domain.
Figure 7: In vitro synthesis of heteroduplex CCC-dsDNA.

Similar content being viewed by others

References

  1. Cesareni, G. Modular Protein Domains, xxii, 501 p. (Wiley-VCH, Weinheim, 2005).

    Google Scholar 

  2. Letunic, I. et al. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34, D257–D260 (2006).

    Article  CAS  Google Scholar 

  3. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  4. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  Google Scholar 

  5. Zarrinpar, A., Bhattacharyya, R.P. & Lim, W.A. The structure and function of proline recognition domains. Sci STKE 2003, RE8 (2003).

    PubMed  Google Scholar 

  6. Tong, A.H. et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295, 321–324 (2002).

    Article  CAS  Google Scholar 

  7. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae . Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  8. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  9. Li, S. et al. A map of the interactome network of the metazoan C. elegans . Science 303, 540–543 (2004).

    Article  CAS  Google Scholar 

  10. Giot, L. et al. A protein interaction map of Drosophila melanogaster . Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  11. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  12. Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  Google Scholar 

  13. Yang, M., Wu, Z. & Fields, S. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res. 23, 1152–1156 (1995).

    Article  CAS  Google Scholar 

  14. Song, E. et al. A high efficiency strategy for binding property characterization of peptide-binding domains. Mol. Cell. Proteomics 5, 1368–1381 (2006).

    Article  CAS  Google Scholar 

  15. Landgraf, C. et al. Protein interaction networks by proteome peptide scanning. PLoS Biol. 2, E14 (2004).

    Article  Google Scholar 

  16. Smith, M.J., Hardy, W.R., Murphy, J.M., Jones, N. & Pawson, T. Screening for PTB domain binding partners and ligand specificity using proteome-derived NPXY peptide arrays. Mol. Cell. Biol. 26, 8461–8474 (2006).

    Article  CAS  Google Scholar 

  17. Sidhu, S.S. Phage display in pharmaceutical biotechnology. Curr. Opin. Biotechnol. 11, 610–616 (2000).

    Article  CAS  Google Scholar 

  18. Smith, G.P. & Petrenko, V.A. Phage display. Chem. Rev. 97, 391–410 (1997).

    Article  CAS  Google Scholar 

  19. Georgiou, G. et al. Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15, 29–34 (1997).

    Article  CAS  Google Scholar 

  20. Wittrup, K.D. Protein engineering by cell-surface display. Curr. Opin. Biotechnol. 12, 395–399 (2001).

    Article  CAS  Google Scholar 

  21. Cull, M., Miller, J. & Schatz, P. Screening for receptor ligands using libraries of peptides linked to the C terminus of the lac repressor. Proc. Natl. Acad. Sci. USA 89, 1865–1869 (1992).

    Article  CAS  Google Scholar 

  22. Lipovsek, D. & Pluckthun, A. In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290, 51–67 (2004).

    Article  CAS  Google Scholar 

  23. Sidhu, S.S., Lowman, H.B., Cunningham, B.C. & Wells, J.A. Phage display &1QJ;for selection of novel binding peptides. Methods Enzymol. 328, 333–363 (2000).

    Article  CAS  Google Scholar 

  24. Sidhu, S.S. Phage display: increasing the rewards from genomic information. Drug Discov. Today 6, 936 (2001).

    Article  Google Scholar 

  25. Feng, S., Kasahara, C., Rickles, R.J. & Schreiber, S.L. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc. Natl. Acad. Sci. USA 92, 12408–12415 (1995).

    Article  CAS  Google Scholar 

  26. Rickles, R.J. et al. Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Proc. Natl. Acad. Sci. USA 92, 10909–10913 (1995).

    Article  CAS  Google Scholar 

  27. Sparks, A.B. et al. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc. Natl. Acad. Sci. USA 93, 1540–1544 (1996).

    Article  CAS  Google Scholar 

  28. Kasanov, J., Pirozzi, G., Uveges, A.J. & Kay, B.K. Characterizing class I WW domains defines key specificity determinants and generates mutant domains with novel specificities. Chem. Biol. 8, 231–241 (2001).

    Article  CAS  Google Scholar 

  29. Zhang, Y. et al. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. J. Biol. Chem. 281, 22299–22311 (2006).

    Article  CAS  Google Scholar 

  30. Appleton, B.A. et al. Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. J. Biol. Chem. 281, 22312–22320 (2006).

    Article  CAS  Google Scholar 

  31. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  32. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    Article  CAS  Google Scholar 

  33. Aslanidis, C. & de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 18, 6069–6074 (1990).

    Article  CAS  Google Scholar 

  34. Petrenko, V.A. & Smith, G.P. Vectors and modes of display. in Phage Display in Biotechnology and Drug Discovery Vol. 3 (ed. Sidhu, S.S.) 63–110 (Taylor and Francis Group, Boca Raton, FL, 2005).

    Chapter  Google Scholar 

  35. Fellouse, F.A. & Pal, G. Methods for the construction of phage-displayed libraries. in Phage Display in Biotechnology and Drug Discovery Vol. 3 (ed. Sidhu, S.S.) 111–142 (Taylor and Francis Group, Boca Raton, FL, 2005).

    Google Scholar 

  36. Sidhu, S.S., Feld, B.K. & Weiss, G.A. M13 bacteriophage coat proteins engineered for improved phage display. Methods Mol. Biol. 352, 205–219 (2007).

    CAS  PubMed  Google Scholar 

  37. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  38. Laura, R.P. et al. The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. J. Biol. Chem. 277, 12906–12914 (2002).

    Article  CAS  Google Scholar 

  39. Higgins, D.G., Thompson, J.D. & Gibson, T.J. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266, 383–402 (1996).

    Article  CAS  Google Scholar 

  40. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  Google Scholar 

  41. Maniatis, T., Fritsch, E.F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987).

    Google Scholar 

  42. Lechner, R.L., Engler, M.J. & Richardson, C.C. Characterization of strand displacement synthesis catalyzed by bacteriophage T7 DNA polymerase. J. Biol. Chem. 258, 11174–11184 (1983).

    CAS  PubMed  Google Scholar 

  43. Held, H.A. & Sidhu, S.S. Comprehensive mutational analysis of the M13 major coat protein: improved scaffolds for C-terminal phage display. J. Mol. Biol. 340, 587–597 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachdev S Sidhu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonikian, R., Zhang, Y., Boone, C. et al. Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat Protoc 2, 1368–1386 (2007). https://doi.org/10.1038/nprot.2007.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.151

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing