Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Rational design and in vitro and in vivo delivery of Dicer substrate siRNA

Abstract

RNA interference is a powerful tool for target-specific knockdown of gene expression. The triggers for this process are duplex small interfering RNAs (siRNAs) of 21–25 nt with 2-bp 3′ overhangs produced in cells by the RNase III family member Dicer. We have observed that short RNAs that are long enough to serve as Dicer substrates (D-siRNA) can often evoke more potent RNA interference than the corresponding 21-nt siRNAs; this is probably a consequence of the physical handoff of the Dicer-produced siRNAs to the RNA-induced silencing complex. Here we describe the design parameters for D-siRNAs and a protocol for in vitro and in vivo intraperitoneal delivery of D-siRNAs and siRNAs to macrophages. siRNA delivery and transfection and analysis of macrophages in vivo can be accomplished within 36 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative design of conventional 21-mer and R and L forms of asymmetrical D-siRNA.
Figure 2: psiCheck2 dual luciferase-based reporter cotransfections for monitoring sense and antisense D-siRNA strand selection.
Figure 3: Finalized designs of GAPDH R-form D-siRNA (27R) and their respective 21-mers.
Figure 4: Transfection efficiency using TransIT-TKO and siRNA-Cy3.
Figure 5: Comparison of gene knockdown using D-siRNA and conventional 21-nt siRNA against TNF-α in RAW 264.7 cells.

Similar content being viewed by others

References

  1. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  2. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  Google Scholar 

  3. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  4. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  Google Scholar 

  5. Amarzguioui, M., Holen, T., Babaie, E. & Prydz, H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589–595 (2003).

    Article  CAS  Google Scholar 

  6. Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705–2716 (2003).

    Article  CAS  Google Scholar 

  7. Dande, P. et al. Improving RNA interference in mammalian cells by 4′-thio-modified small interfering RNA (siRNA): effect on siRNA activity and nuclease stability when used in combination with 2′-O-alkyl modifications. J. Med. Chem. 49, 1624–1634 (2006).

    Article  CAS  Google Scholar 

  8. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  Google Scholar 

  9. Prakash, T.P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247–4253 (2005).

    Article  CAS  Google Scholar 

  10. Braasch, D.A. et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42, 7967–7975 (2003).

    Article  CAS  Google Scholar 

  11. Chiu, Y.L. & Rana, T.M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048 (2003).

    Article  CAS  Google Scholar 

  12. Elmen, J. et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33, 439–447 (2005).

    Article  CAS  Google Scholar 

  13. Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23, 222–226 (2005).

    Article  CAS  Google Scholar 

  14. Rose, S.D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res. 33, 4140–4156 (2005).

    Article  CAS  Google Scholar 

  15. Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23, 227–231 (2005).

    Article  CAS  Google Scholar 

  16. Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J. A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).

    Article  CAS  Google Scholar 

  17. Gregory, R.I., Chendrimada, T.P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640 (2005).

    Article  CAS  Google Scholar 

  18. Maniataki, E. & Mourelatos, Z. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19, 2979–2990 (2005).

    Article  CAS  Google Scholar 

  19. Krol, J. et al. Structural features of microRNA (miRNA) precursors and their relevance to miRNA biogenesis and small interfering RNA/short hairpin RNA design. J. Biol. Chem. 279, 42230–42239 (2004).

    Article  CAS  Google Scholar 

  20. Amarzguioui, M. & Prydz, H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058 (2004).

    Article  CAS  Google Scholar 

  21. Huesken, D. et al. Design of a genome-wide siRNA library using an artificial neural network. Nat. Biotechnol. 23, 995–1001 (2005).

    Article  CAS  Google Scholar 

  22. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  Google Scholar 

  23. Du, Q., Thonberg, H., Wang, J., Wahlestedt, C. & Liang, Z. A systematic analysis of the silencing effects of an active siRNA at all single-nucleotide mismatched target sites. Nucleic Acids Res. 33, 1671–1677 (2005).

    Article  CAS  Google Scholar 

  24. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20, 6877–6888 (2001).

    Article  CAS  Google Scholar 

  25. Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30, 1757–1766 (2002).

    Article  CAS  Google Scholar 

  26. Miller, V.M., Gouvion, C.M., Davidson, B.L. & Paulson, H.L. Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res. 32, 661–668 (2004).

    Article  CAS  Google Scholar 

  27. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  Google Scholar 

  28. Hornung, V. et al. Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11, 263–270 (2005).

    Article  CAS  Google Scholar 

  29. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  30. Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

    Article  CAS  Google Scholar 

  31. Robbins, M.A. & Rossi, J.J. Sensing the danger in RNA. Nat. Med. 11, 250–251 (2005).

    Article  CAS  Google Scholar 

  32. Sioud, M. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J. Mol. Biol. 348, 1079–1090 (2005).

    Article  CAS  Google Scholar 

  33. Marques, J.T. et al. A structural basis for discriminating between self and nonself double-strand RNAs in mammalian cells. Nat. Biotechnol. 24, 559–565 (2006).

    Article  CAS  Google Scholar 

  34. Judge, A.D., Bola, G., Lee, A.C. & MacLachlan, I. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13, 494–505 (2006).

    Article  CAS  Google Scholar 

  35. Amarzguioui, M. Improved siRNA-mediated silencing in refractory adherent cell lines by detachment and transfection in suspension. Biotechniques 36, 766–768, 770 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.J.R. was supported by National Institutes of Health grants AI29329, AI424552 and HL07470. E.C. was supported by National Institutes of Health grant EY013814.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Amarzguioui or John J Rossi.

Ethics declarations

Competing interests

J.H. is a co-founder and employee of Mirus Bio Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amarzguioui, M., Lundberg, P., Cantin, E. et al. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1, 508–517 (2006). https://doi.org/10.1038/nprot.2006.72

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.72

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing