Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Synthesis of light-activated antisense oligodeoxynucleotide

Abstract

The activity of a 20-mer antisense oligodeoxynucleotide (asODN) is transiently blocked by attaching a partially complementary sense strand (sODN) via a heterobifunctional photocleavable linker (PL). The asODN-PL-sODN conjugate forms a DNA hairpin-like structure that is considerably more stable than the corresponding asODN/sODN duplex. In conjugate form, the asODN is prevented from hybridizing to exogenous RNA or DNA molecules. Activity is restored after modest exposure to UV light (λ ≈ 365 nm). Here, we provide a detailed procedure for synthesizing photoactive asODNs in good yields. Synthesis, purification and analysis of the light-activated asODN can be completed within 1–2 weeks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5: HPLC traces (Step 34) observed under different reaction conditions to generate PL-oligonucleotide in Step 30: (a) 1 h at room temperature; (b) 2 h at 35 °C or 40 min at over 50 °C; (c) 40 min at 35 °C.
Figure 6

Similar content being viewed by others

References

  1. Zheng, L. et al. An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 135–140 (2004).

    Article  CAS  Google Scholar 

  2. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  3. Ewald, A.J., Peyrot, S.M., Tyszka, J.M., Fraser, S.E. & Wallingford, J.B. Regional requirements for dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation. Development 131, 6195–6209 (2004).

    Article  CAS  Google Scholar 

  4. Hayashi, S. & McMahon, A.P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002).

    Article  CAS  Google Scholar 

  5. Pasquinelli, A.E. & Ruvkun, G. Control of developmental timing by microRNAs and their targets. Annu. Rev. Cell Dev. Biol. 18, 495–513 (2002).

    Article  CAS  Google Scholar 

  6. Yuh, C.-H., Dorman, E.R., Howard, M.L. & Davidson, E.H. An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. Dev. Biol. 269, 536–551 (2004).

    Article  CAS  Google Scholar 

  7. McCray, J.A. & Trentham, D.R. Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Biophys. Chem. 18, 239–270 (1989).

    Article  CAS  Google Scholar 

  8. Goeldner, M. & Givens, R. (eds.) Dynamic Studies in Biology (Wiley-VCH, Weinheim, 2005).

  9. Pelliccioli, A.P. & Wirz, J. Photoremovable protecting groups: reaction mechanisms and applications. Photochem. Photobiol. Sci. 1, 441–458 (2002).

    Article  Google Scholar 

  10. Mayer, G. & Heckel, A. Biologically active molecules with a 'light switch'. Angew. Chem. Int. Ed. Engl. 45, 4900–4921 (2006).

    Article  CAS  Google Scholar 

  11. Adams, S.R. & Tsien, R.Y. Controlling cell chemistry with caged compounds. Annu. Rev. Physiol. 55, 755–784 (1993).

    Article  CAS  Google Scholar 

  12. Lima, S.Q. & Miesenbock, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  Google Scholar 

  13. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).

    Article  CAS  Google Scholar 

  14. Piston, D.W., Summers, R.G., Knobel, S.M. & Morrill, J.B. Characterization of involution during sea urchin gastrulation using two-photon excited photorelease and confocal microscopy. Microsc. Microanal. 4, 404–414 (1998).

    Article  CAS  Google Scholar 

  15. Shoham, S., O'Connor, D.H., Sarkisov, D.V. & Wang, S.S.-H. Rapid neurotransmitter uncaging in spatially defined patterns. Nat. Methods 2, 837–843 (2005).

    Article  CAS  Google Scholar 

  16. Ando, H. et al. Lhx2 mediates the activity of Six3 in zebrafish forebrain growth. Dev. Biol. 287, 456–468 (2005).

    Article  CAS  Google Scholar 

  17. Ando, H., Furuta, T., Tsien, R.Y. & Okamoto, H. Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos. Nat. Genet. 28, 317–325 (2001).

    Article  CAS  Google Scholar 

  18. Monroe, W.T., McQuain, M.M., Chang, M.S., Alexander, J.S. & Haselton, F.R. Targeting expression with light using caged DNA. J. Biol. Chem. 274, 20895–20900 (1999).

    Article  CAS  Google Scholar 

  19. Shah, S., Rangarajan, S. & Friedman, S.H. Light-activated RNA interference. Angew. Chem. Int. Ed. Engl. 44, 1328–1332 (2005).

    Article  CAS  Google Scholar 

  20. Ghosn, B., Haselton, F.R., Gee, K.R. & Monroe, W.T. Control of DNA hybridization with photocleavable adducts. Photochem. Photobiol. 81, 953–959 (2005).

    Article  CAS  Google Scholar 

  21. Tang, X. & Dmochowski, I.J. Phototriggering of caged fluorescent oligodeoxynucleotides. Org. Lett. 7, 279–282 (2005).

    Article  CAS  Google Scholar 

  22. Matsunaga, D., Asanuma, H. & Komiyama, M. Photoregulation of RNA digestion by RNase H with azobenzene-tethered DNA. J. Am. Chem. Soc. 126, 11452–11453 (2004).

    Article  CAS  Google Scholar 

  23. Tang, X. & Dmochowski, I.J. Controlling RNA digestion by RNase H with a light-activated DNA hairpin. Angew. Chem. Int. Ed. Engl. 45, 3523–3526 (2006).

    Article  CAS  Google Scholar 

  24. Goldmacher, V.S., Senter, P.D., Lambert, J.M. & Blattler, W.A. Photoactivation of toxin conjugates. Bioconjug. Chem. 3, 104–107 (1992).

    Article  CAS  Google Scholar 

  25. Senter, P.D., Tansey, M.J., Lambert, J.M. & Blattler, W.A. Novel photocleavable protein crosslinking reagents and their use in the preparation of antibody-toxin conjugates. Photochem. Photobiol. 42, 231–237 (1985).

    Article  CAS  Google Scholar 

  26. Kwart, H. & Burchuk, I. Isomerism and adduct stability in the Diels-Alder reaction. I. The adducts of furan and maleimide. J. Am. Chem. Soc. 74, 3094–3097 (1952).

    Article  CAS  Google Scholar 

  27. Ishii, Y. & Lehrer, S.S. Effects of the state of the succinimido-ring on the fluorescence and structural properties of pyrene maleimide-labeled alpha alpha-tropomyosin. Biophys. J. 50, 75–80 (1986).

    Article  CAS  Google Scholar 

  28. Sambrook, J. & Russell, D.W. In Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2001) 9.66–9.69.

Download references

Acknowledgements

Support for this work came from grants from the Penn Genomics Institute (PGI) and Penn Institute for Medicine and Engineering (IME), and startup funds provided to I.J.D. by the Department of Chemistry at the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan J Dmochowski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, X., Dmochowski, I. Synthesis of light-activated antisense oligodeoxynucleotide. Nat Protoc 1, 3041–3048 (2006). https://doi.org/10.1038/nprot.2006.462

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.462

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing