Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays

Abstract

This protocol details methodologies for the site-specific biotinylation of proteins using in vitro, in vivo and cell-free systems for the purpose of fabricating functional protein arrays. Biotinylation of recombinant proteins, in vitro as well as in vivo, relies on the chemoselective reaction between cysteine-biotin and a reactive thioester group at the C-terminus of a protein generated via intein-mediated cleavage. The cell-free system utilizes low concentrations of biotin-conjugated puromycin. Unlike other approaches that require tedious and costly downstream steps of protein purification, C-terminal biotinylated proteins can be captured directly onto avidin-functionalized slides from a mixture of other cellular proteins to generate the corresponding protein array. These methods were designed to maintain the integrity and activity of proteins in a microarray format, which potentially allows simultaneous functional assays of thousands of proteins. Assuming that the target proteins have been cloned into the expression vector, transformation of bacterial strain and growth of starter culture would take 2 days. Expression and in vitro protein purification and biotinylation will take 3 days whereas the in vivo method would take 2 days. The cell-free protein biotinylation strategy requires only 6–8 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Schematic for cell-free biotinylation of proteins using 5′-Biotin-dc-Pmn.
Figure 4
Figure 5: Effect of C-terminal amino acid on on-column cleavage and biotinylation.
Figure 6: Analysis of samples collected at different steps during in vitro purification and on-column biotinylation of maltose binding protein–intein fusion using a chitin column.

Similar content being viewed by others

References

  1. Chattopadhaya, S. & Yao, S.Q. in Enzyme Assays: High Throughput Screening, Genetic Selection and Fingerprinting (ed. Reymond, J.-L.) (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006).

    Google Scholar 

  2. Vijayendran, R.A. & Leckband, D.E. A quantitative assessment of heterogeneity for surface-immobilized proteins. Anal. Chem. 73, 471–480 (2001).

    Article  CAS  Google Scholar 

  3. LaBear, J. & Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 1–6 (2005).

    Article  Google Scholar 

  4. Zhu, H. et al. Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001).

    Article  CAS  Google Scholar 

  5. Hodneland, C.D., Lee, Y. -S., Min, D. -H. & Mrksich, M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc. Natl. Acad. Sci. USA. 99, 5048–5052 (2002).

    Article  CAS  Google Scholar 

  6. Kindermann, M., George, N., Johnsson, N. & Johnsson, K. Covalent and selective immobilization of fusion proteins. J. Am. Chem. Soc. 125, 7810–7811 (2003).

    Article  CAS  Google Scholar 

  7. Yin, J., Liu, F., Li, X. & Walsh, C.T. Labeling proteins with small molecules by site-specific posttranslational modification. J. Am. Chem. Soc. 126, 7754–7755 (2004).

    Article  CAS  Google Scholar 

  8. Paborsky, L.R., Dunn, K.E., Gibbs, C.S. & Dougherty, J.P. A nickel chelate microtiter plate assay for six histidine-containing proteins. Anal. Biochem. 234, 60–65 (2004).

    Article  Google Scholar 

  9. de Araújo, A.D. et al. Diels–Alder ligation and surface immobilization of proteins. Angew. Chemie Int. Ed. 45, 296–301 (2006).

    Article  Google Scholar 

  10. Watzke, A. et al. Site-selective protein immobilization by Staudinger ligation. Angew. Chemie Int. Ed. 45, 1408–1412 (2006).

    Article  CAS  Google Scholar 

  11. Lin, P.-C. et al. Site-specific protein modification through CuI-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew. Chemie Int. Ed. 45, 4286–4290 (2006).

    Article  CAS  Google Scholar 

  12. Dawson, P.E., Muir, T.W., Lewis, I.C. & Kent, S.B Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  13. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  Google Scholar 

  14. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA. 95, 6705–6710 (1998).

    Article  CAS  Google Scholar 

  15. Lovrinovic, M. et al. Synthesis of protein–nucleic acid conjugates by expressed protein ligation. Chem. Commun. 822–823 (2003).

  16. Yeo, S.Y.D., Srinivasan, R., Uttamchandani, M., Chen, G.Y.J., Zhu, Q. & Yao, S.Q. Cell-permeable small molecule probes for site-specific labeling of proteins. Chem. Commun. 2870–2871 (2003).

  17. Tolbert, T.J. & Wong, C.-H. Intein mediated synthesis of proteins containing carbohydrates and other molecular probes. J. Am. Chem. Soc. 122, 5421–5428 (2000).

    Article  CAS  Google Scholar 

  18. Hahn, M.E. & Muir, T.W. Photocontrol of Smad2, a multiphosphorylated cell signaling protein, through caging of activated phosphoserines. Angew. Chemie Int. Ed. 43, 5800–5803 (2004).

    Article  CAS  Google Scholar 

  19. Pellois, J.–P. & Muir, T.W. A ligation and photorelease strategy for the temporal and spatial control of protein function in living cells. Angew. Chemie Int. Ed. 44, 5713–5717 (2005).

    Article  CAS  Google Scholar 

  20. Kwon, Y., Coleman, M.A. & Camarero, J.A. Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew. Chemie Int. Ed. 45, 1726–1729 (2006).

    Article  CAS  Google Scholar 

  21. Camarero, J.A., Kwon, Y. & Coleman, M.A. Chemoselective attachment of biologically active proteins to surfaces by expressed protein ligation and its application for “Protein Chip” fabrication. J. Am. Chem. Soc. 126, 14730–14731 (2004).

    Article  CAS  Google Scholar 

  22. Lesaicherre, M.-L., Lue, R.Y.P., Chen, G.Y.J., Zhu, Q. & Yao, S.Q. Intein-mediated biotinylation of proteins and its application in a protein microarray. J. Am. Chem. Soc. 124, 8768–8769 (2002).

    Article  CAS  Google Scholar 

  23. Lue, R.Y.P., Chen, G.Y.J., Hu, Y., Zhu, Q. & Yao, S.Q. Versatile protein biotinylation strategies for potential high-throughput proteomics. J. Am. Chem. Soc. 126, 1055–1062 (2004).

    Article  CAS  Google Scholar 

  24. Cronan, J.E. & Reed, K.E. Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis. Methods Enzymol. 326, 440–458 (2000).

    Article  CAS  Google Scholar 

  25. Tan, L.P., Lue, R.Y.P., Chen, G.Y.J. & Yao, S.Q. Improving the intein-mediated, site-specific protein biotinylation strategies both in vitro and in vivo. Bioorg. Med. Chem. Lett. 14, 6067–6070 (2004).

    Article  CAS  Google Scholar 

  26. Miyamoto-Sato, E., Nemoto, N., Kobayashi, K. & Yanagawa, H. Specific bonding of puromycin to full-length protein at the C-terminus. Nucleic Acids. Res. 28, 1176–1182 (2000).

    Article  CAS  Google Scholar 

  27. Tan, L.P., Chen, G.Y.J. & Yao, S.Q. Expanding the scope of site-specific protein biotinylation strategies using small molecules. Bioorg. Med. Chem. Lett. 14, 5735–5738 (2004).

    Article  CAS  Google Scholar 

  28. Girish, A., Sun, H., Yeo, D.S.Y., Chen, G.Y.J., Chua, T.-K. & Yao, S.Q. Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. Bioorg. Med. Chem. Lett. 15, 2447–2451 (2005).

    Article  CAS  Google Scholar 

  29. Tolbert, T.J. & Wong, C.-H. New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation. Angew. Chemie Int. Ed. 41, 2171–2174 (2002).

    Article  CAS  Google Scholar 

  30. Kapust, R.B. & Waugh, D.S. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr. Purif. 19, 312–318 (2000).

    Article  CAS  Google Scholar 

  31. Sambrook, J., Fritsch, E.F. & Maniatis, T in Molecular Cloning: A Laboratory Manual 2nd edn. (Cold Spring Harbor Laboratory Press, New York, NY, USA, 1989).

    Google Scholar 

  32. Cronan, J.E. Biotination of proteins in vivo. J. Biol. Chem 265, 10327–10333 (1990).

    CAS  PubMed  Google Scholar 

  33. Agafonov, D.E., Rabe, K.S., Grote, M., Voertler, C.S. & Sprinzl, M. C-terminal modifications of a protein by UAG-encoded incorporation of puromycin during in vitro protein synthesis in the absence of release factor 1. ChemBioChem 7, 330–336 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Q Yao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhaya, S., Tan, L. & Yao, S. Strategies for site-specific protein biotinylation using in vitro, in vivo and cell-free systems: toward functional protein arrays. Nat Protoc 1, 2386–2398 (2006). https://doi.org/10.1038/nprot.2006.338

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.338

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing