Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

Abstract

Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be clearly imprinted on the energy spectrum, yet so far a direct measurement of such a spectrum in a controllable one-dimensional setting is still missing. Here we use an ultraclean carbon nanotube to realize this system in a tunable potential. Using tunnelling spectroscopy we measure the addition spectra of two interacting carriers, electrons or holes, and identify seven low-energy states characterized by their exchange symmetries. The formation of a Wigner molecule is evident from a tenfold quenching of the fundamental excitation energy as compared with the non-interacting value. Our ability to tune the two-carrier state in space and to study it for both electrons and holes provides an unambiguous demonstration of this strongly interacting quantum ground state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Addition energy spectra of a two-electron molecular state in an ultraclean nanotube.
Figure 2: Addition energy spectra predicted for two non-interacting and two strongly interacting electrons in a nanotube.
Figure 3: Magnetic-dependent spectra of the two-electron molecular states at different detunings.
Figure 4: Quenching of excitation energies in a Wigner molecule.

Similar content being viewed by others

References

  1. Bryant, G. Electronic structure of ultrasmall quantum-well boxes. Phys. Rev. Lett. 59, 1140–1143 (1987).

    Article  ADS  Google Scholar 

  2. Häusler, W. & Kramer, B. Interacting electrons in a one-dimensional quantum dot. Phys. Rev. B 47, 16353–16357 (1993).

    Article  ADS  Google Scholar 

  3. Meyer, J. S. & Matveev, K. A. Wigner crystal physics in quantum wires. J. Phys. Condens. Matter 21, 023203 (2009).

    Article  ADS  Google Scholar 

  4. Egger, R. & Gogolin, A. Effective low-energy theory for correlated carbon nanotubes. Phys. Rev. Lett. 79, 5082–5085 (1997).

    Article  ADS  Google Scholar 

  5. Kane, C., Balents, L. & Fisher, M. Coulomb interactions and mesoscopic effects in carbon nanotubes. Phys. Rev. Lett. 79, 5086–5089 (1997).

    Article  ADS  Google Scholar 

  6. Bockrath, M. et al. Luttinger-liquid behaviour in carbon nanotubes. Nature 397, 598–601 (1999).

    Article  ADS  Google Scholar 

  7. Yao, Z., Postma, H. W. C., Balents, L. & Dekker, C. Carbon nanotube intramolecular junctions. Nature 402, 540–544 (1999).

    Article  Google Scholar 

  8. Ishii, H. et al. Direct observation of Tomonaga–Luttinger-liquid state in carbon nanotubes at low temperatures. Nature 426, 540–544 (2003).

    Article  ADS  Google Scholar 

  9. Jarillo-Herrero, P., Sapmaz, S., Dekker, C., Kouwenhoven, L. P. & Van Der Zant, H. S. J. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot. Nature 429, 389–392 (2004).

    Article  ADS  Google Scholar 

  10. Minot, E. D., Yaish, Y., Sazonova, V. & McEuen, P. L. Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428, 536–539 (2004).

    Article  ADS  Google Scholar 

  11. Cao, J., Wang, Q. & Dai, H. Electron transport in very clean, as-grown suspended carbon nanotubes. Nature Mater. 4, 745–749 (2005).

    Article  ADS  Google Scholar 

  12. Deshpande, V. V. & Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nature Phys. 4, 314–318 (2008).

    Article  Google Scholar 

  13. Kuemmeth, F., Ilani, S., Ralph, D. C. & McEuen, P. L. Coupling of spinand orbital motion of electrons in carbon nanotubes. Nature 452, 448–452 (2008).

    Article  ADS  Google Scholar 

  14. Steele, G. A., Gotz, G. & Kouwenhoven, L. P. Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes. Nature Nanotechnol. 4, 363–367 (2009).

    ADS  Google Scholar 

  15. Ellenberger, C. et al. Excitation spectrum of two correlated electrons in a lateral quantum dot with negligible Zeeman splitting. Phys. Rev. Lett. 96, 126806 (2006).

    Article  ADS  Google Scholar 

  16. Kalliakos, S. et al. A molecular state of correlated electrons in a quantum dot. Nature Phys. 4, 467–471 (2008).

    Article  ADS  Google Scholar 

  17. Singha, A. et al. Correlated electrons in optically tunable quantum dots: Building an electron dimer molecule. Phys. Rev. Lett. 104, 246802 (2010).

    Article  ADS  Google Scholar 

  18. Kristinsdóttir, L. et al. Signatures of Wigner localization in epitaxially grown nanowires. Phys. Rev. B 83, 041101(R) (2011).

    Article  ADS  Google Scholar 

  19. Jespersen, T. S. et al. Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nature Phys. 7, 348–353 (2011).

    Article  ADS  Google Scholar 

  20. Pei, F., Laird, E. A., Steele, G. A. & Kouwenhoven, L. P. Valley-spin blockade and spin resonance in carbon nanotubes. Nature Nanotechnol. 7, 630–634 (2012).

    Article  ADS  Google Scholar 

  21. Secchi, A. & Rontani, M. Coulomb versus spin–orbit interaction in few-electron carbon-nanotube quantum dots. Phys. Rev. B 80, 041404(R) (2009).

    Article  ADS  Google Scholar 

  22. Wunsch, B. Few-electron physics in a nanotube quantum dot with spin–orbit coupling. Phys. Rev. B 79, 235408 (2009).

    Article  ADS  Google Scholar 

  23. Pályi, A. & Burkard, G. Spin-valley blockade in carbon nanotube double quantum dots. Phys. Rev. B 82, 155424 (2010).

    Article  ADS  Google Scholar 

  24. Secchi, A. & Rontani, M. Wigner molecules in carbon-nanotube quantum dots. Phys. Rev. B 82, 035417 (2010).

    Article  ADS  Google Scholar 

  25. Von Stecher, J., Wunsch, B., Lukin, M., Demler, E. & Rey, A. M. Double quantum dots in carbon nanotubes. Phys. Rev. B 82, 125437 (2010).

    Article  ADS  Google Scholar 

  26. Kuemmeth, F., Churchill, H. O. H., Herring, P. K. & Marcus, C. M. Carbon nanotubes for coherent spintronics. Mater. Today 13, 18–26 (March, 2010).

    Article  Google Scholar 

  27. Ingerslev Jørgensen, H. et al. Singlet–triplet physics and shell filling in carbon nanotube double quantum dots. Nature Phys. 4, 536–539 (2008).

    Article  Google Scholar 

  28. Churchill, H. O. H. et al. Relaxation and dephasing in a two-electron 13C nanotube double quantum dot. Phys. Rev. Lett. 102, 166802 (2009).

    Article  ADS  Google Scholar 

  29. Churchill, H. O. H. et al. Electron–nuclear interaction in 13C nanotube double quantum dots. Nature Phys. 5, 321–326 (2009).

    Article  ADS  Google Scholar 

  30. Laird, E., Pei, F. & Kouwenhoven, L. A valley-spin qubit in a carbon nanotube. Preprint at http://arxiv.org/abs/1210.3085 (2012).

  31. Rontani, M., Cavazzoni, C., Bellucci, D. & Goldoni, G. Full configuration interaction approach to the few-electron problem in artificial atoms. J. Chem. Phys. 124, 124102 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge E. Berg, A. Stern, A. Yacoby and B. Wunsch for useful discussions. S.I. acknowledges the financial support by the ISF Legacy Heritage foundation (2005/08-80.0), the Bi-National science foundation (BSF 710647-03), the Minerva foundation, the ERC starters grant (258753), the Marie Curie People grant (IRG 239322), and the Alon fellowship. S.I. is incumbent of the William Z. and Eda Bess Novick career development chair. P.L.M. and D.C.R. acknowledge support by the NSF through the Center for Nanoscale systems (EEC-0646547), by the NSF through DMR-1010768, and by the MARCO Focused Research Center on Materials, Structures and Devices. The experiments used the facilities of the Cornell node of the National Nanotechnology Infrastructure Network (EECS-0335765) and the Cornell Center for Materials Research (DMR-1120296), both funded by NSF. M.R. and A.S. acknowledge support from Fondazione Cassa di Risparmio di Modena through the project COLD and FEW, from EU through the Marie Curie ITN INDEX, and from the CINECA-ISCRA supercomputing grant IscrC_TUN1DFEW. F.K. acknowledges support by the Center for Quantum Devices, funded by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

F.K., S.I., D.C.R. and P.L.M. conceived and designed the experiments. F.K. and S.I. performed the experiments. S.P., A.S. and M.R. provided theoretical tools for analysing the data. S.P., F.K., A.S., M.R. and S.I. analysed the data. S.P. and S.I. wrote the manuscript and all authors contributed to its final version.

Corresponding author

Correspondence to S. Ilani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecker, S., Kuemmeth, F., Secchi, A. et al. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nature Phys 9, 576–581 (2013). https://doi.org/10.1038/nphys2692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2692

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing