Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interplay between superconductivity and ferromagnetism in crystalline nanowires

Abstract

The interaction between superconductivity and ferromagnetism, which entails incompatible spin order, is one of the problems of fundamental interest in condensed-matter physics. In general, when a ferromagnet is placed in contact with a superconductor, the Cooper pairs from the superconductor are not expected to survive beyond at most a few nanometres into the ferromagnet. Here we present a systematic study of single-crystal ferromagnetic cobalt nanowires sandwiched between superconducting electrodes. Surprisingly, we find that a cobalt wire as long as 600 nm attains zero resistance at low temperatures. For even longer nanowires, the transition to incomplete superconductivity is foreshadowed by a strikingly large and sharp resistance peak near the superconducting transition temperature of the electrodes. Although the origin of the ‘critical peak’ remains mysterious, our analysis strongly points against charge or spin imbalance as its underlying cause.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM characterization and transport measurement of a 40 nm Co nanowire, with L=0.6 μm.
Figure 2: RT behaviour of 1.5-μm-long Co nanowires contacted by superconducting electrodes.
Figure 3: RH property and AMR effect of the 80 nm Co nanowire.
Figure 4: Measurements using a combination of superconducting and non-superconducting electrodes.
Figure 5: Transport behaviour of a 60 nm Ni nanowire.

Similar content being viewed by others

References

  1. De Gennes, P. G. Boundary effects in superconductors. Rev. Mod. Phys. 36, 225–237 (1964).

    Article  ADS  Google Scholar 

  2. van Dover, R. B., de Lozanne, A. & Beasley, M. R. Superconductor–normal–superconductor microbridges: Fabrication, electrical behaviour, and modelling. J. Appl. Phys. 52, 7327–7343 (1981).

    Article  ADS  Google Scholar 

  3. Wang, J. et al. Proximity-induced superconductivity in nanowires: Minigap state and differential magnetoresistance oscillations. Phys. Rev. Lett. 102, 247003 (2009).

    Article  ADS  Google Scholar 

  4. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    Article  ADS  Google Scholar 

  5. Chiang, Yu. N., Shevchenko, O. G. & Kolenov, R. N. Manifestation of coherent and spin-dependent effects in the conductance of ferromagnets adjoining a superconductor. Low Temp. Phys. 33, 314–320 (2007).

    Article  ADS  Google Scholar 

  6. Aumentado, J. & Chandrasekhar, V. Mesoscopic ferromagnet–superconductor junctions and the proximity effect. Phys. Rev. B 64, 054505 (2001).

    Article  ADS  Google Scholar 

  7. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Odd triplet superconductivity and related phenomena in superconductor–ferromagnet structures. Rev. Mod. Phys. 77, 1321–1373 (2005).

    Article  ADS  Google Scholar 

  8. Giroud, M., Courtois, H., Hasselbach, K., Mailly, D. & Pannetier, B. Superconducting proximity effect in a mesoscopic ferromagnetic wire. Phys. Rev. B 58, R11872–R11875 (1998).

    Article  ADS  Google Scholar 

  9. Petrashov, V. T., Sosnin, I. A., Cox, I., Parsons, A. & Troadec, C. Giant mutual proximity effects in ferromagnetic/superconducting nanostructures. Phys. Rev. Lett. 83, 3281–3284 (1999).

    Article  ADS  Google Scholar 

  10. Pena, V. et al. Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect. Phys. Rev. B 69, 224502 (2004).

    Article  ADS  Google Scholar 

  11. Sosnin, I., Cho, H., Petrashov, V. T. & Volkov, A. F. Superconducting phase coherent electron transport in proximity conical ferromagnets. Phys. Rev. Lett. 96, 157002 (2006).

    Article  ADS  Google Scholar 

  12. Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2 . Nature 439, 825–827 (2006).

    Article  ADS  Google Scholar 

  13. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Long-range proximity effects in superconductor–ferromagnet structures. Phys. Rev. Lett. 86, 4096–4099 (2001).

    Article  ADS  Google Scholar 

  14. Tian, M. L. et al. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step. Nano Lett. 5, 697–703 (2005).

    Article  ADS  Google Scholar 

  15. Hernandez-Ramirez, F. et al. Electrical properties of individual tin oxide nanowires contacted to platinum electrodes. Phys. Rev. B 76, 085429 (2007).

    Article  ADS  Google Scholar 

  16. Kumar, N. et al. Investigation of superconductivity in electrochemically fabricated AuSn nanowires. Nanotechnology 19, 365704 (2008).

    Article  ADS  Google Scholar 

  17. Tian, M. L. et al. Superconductivity and quantum oscillations in crystalline Bi nanowire. Nano Lett. 9, 3196–3202 (2009).

    Article  ADS  Google Scholar 

  18. Sadki, E. S., Ooi, S. & Hirata, K. Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85, 6206–6208 (2004).

    Article  ADS  Google Scholar 

  19. Li, W., Fenton, J. C., Wang, Y., McComb, D. M. & Warburton, P. A. Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing. J. Appl. Phys. 104, 093913 (2008).

    Article  ADS  Google Scholar 

  20. Schmidt, V. V. in The Physics of Superconductors: Introduction to Fundamentals and Applications (eds Muller, P. & Ustinov, A. V.) (Springer, 1997).

    Book  Google Scholar 

  21. Tian, M. L. et al. Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 71, 104521 (2005).

    Article  ADS  Google Scholar 

  22. Vila, L. et al. Transport and magnetic properties of isolated cobalt nanowires. IEEE Trans. Magn. 38, 2577–2579 (2002).

    Article  ADS  Google Scholar 

  23. Brands, M. & Dumpich, G. Experimental determination of anisotropy and demagnetizing factors of single Co nanowires by magnetoresistance measurements. J. Appl. Phys. 98, 014309 (2005).

    Article  ADS  Google Scholar 

  24. Santhanam, P., Shi, C. C., Wind, S. J., Brady, M. J. & Bucchignano, J. J. Resistance anomaly near the superconducting transition temperature in short aluminium wires. Phys. Rev. Lett. 66, 2254–2257 (1991).

    Article  ADS  Google Scholar 

  25. Park, M., Isaacson, M. S. & Parpia, J. M. Resistance anomaly and excess voltage in inhomogeneous superconducting aluminium thin films. Phys. Rev. B 55, 9067–9076 (1997).

    Article  ADS  Google Scholar 

  26. Arutyunov, K. Yu., Presnov, D. A., Lotkhov, S. V., Pavolotski, A. B. & Rinderer, L. Resistive-state anomaly in superconducting nanostructures. Phys. Rev. B 59, 6487–6498 (1999).

    Article  ADS  Google Scholar 

  27. Tian, M. L. et al. Suppression of superconductivity in zinc nanowires by bulk superconductors. Phys. Rev. Lett. 95, 076802 (2005).

    Article  ADS  Google Scholar 

  28. Zgirski, M., Riikonen, K., Touboltsev, V. & Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 5, 1029–1033 (2005).

    Article  ADS  Google Scholar 

  29. Wang, J. et al. Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts. Appl. Phys. Lett. 92, 233119 (2008).

    Article  ADS  Google Scholar 

  30. Bezryadin, A., Lau, C. N. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000).

    Article  ADS  Google Scholar 

  31. Ciurtois, H., Gandit, Ph. & Pannetier, B. Proximity-induced superconductivity in a narrow metallic wire. Phys. Rev. B 52, 1162–1166 (1995).

    Article  ADS  Google Scholar 

  32. Jedema, F. J., van Wees, B. J., Hoving, B. H., Filip, A. T. & Klapwijk, T. M. Spin-accumulation-induced resistance in mesoscopic ferromagnet–superconductor junctions. Phys. Rev. B 60, 16549–16552 (1999).

    Article  ADS  Google Scholar 

  33. Fal’ko, V. I., Volkov, A. F. & Lambert, C. Interplay between spin-relaxation and Andreev reflection in ferromagnetic wires with superconducting contacts. Phys. Rev. B 60, 15394–15397 (1999).

    Article  ADS  Google Scholar 

  34. Soulen, R. J. Jr et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    Article  ADS  Google Scholar 

  35. Piraux, L., Dubois, S., Fert, A. & Belliard, L. The temperature dependence of the perpendicular giant magnetoresistance in Co/Cu multilayered nanowires. Eur. Phys. J. B 4, 413–420 (1998).

    Article  ADS  Google Scholar 

  36. Gueron, S., Pothier, H., Birge, N. O., Esteve, D. & Devoret, M. H. Superconducting proximity effect probed on a mesoscopic length scale. Phys. Rev. Lett. 77, 3025–3028 (1996).

    Article  ADS  Google Scholar 

  37. Usadel, K. D. Generalized diffusion equation for superconducting alloys. Phys. Rev. Lett. 25, 507–509 (1970).

    Article  ADS  Google Scholar 

  38. Ozatay, O. et al. Sidewall oxide effects on spin-torque- and magnetic-field-induced reversal characteristics of thin-film nanomagnets. Nature Mater. 7, 567–573 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Penn State MRSEC under NSF grant DMR-0820404 and the Pennsylvania State University Materials Research Institute Nano Fabrication Network and the National Science Foundation Cooperative Agreement No. 0335765, National Nanotechnology Infrastructure Network, with Cornell University. We are grateful to P. A. Lee for helpful discussions. We thank J. Cardellino and D. Rench for magnetic force microscopy measurements.

Author information

Authors and Affiliations

Authors

Contributions

J.W., M.H.W.C. and M.T. planned the experiments. J.W., M.S., N.K. and B.L. carried out the experiments. J.W., M.H.W.C., C.S., J.K.J., N.S., M.T. and T.E.M. analysed the data.

Corresponding authors

Correspondence to Jian Wang or M. H. W. Chan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1778 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Singh, M., Tian, M. et al. Interplay between superconductivity and ferromagnetism in crystalline nanowires. Nature Phys 6, 389–394 (2010). https://doi.org/10.1038/nphys1621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing