Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions

Abstract

Ultrasensitive nanomechanical instruments, including the atomic force microscope (AFM)1,2,3,4 and optical and magnetic tweezers5,6,7,8, have helped shed new light on the complex mechanical environments of biological processes. However, it is difficult to scale down the size of these instruments due to their feedback mechanisms9, which, if overcome, would enable high-density nanomechanical probing inside materials. A variety of molecular force probes including mechanophores10, quantum dots11, fluorescent pairs12,13 and molecular rotors14,15,16 have been designed to measure intracellular stresses; however, fluorescence-based techniques can have short operating times due to photo-instability and it is still challenging to quantify the forces with high spatial and mechanical resolution. Here, we develop a compact nanofibre optic force transducer (NOFT) that utilizes strong near-field plasmon–dielectric interactions to measure local forces with a sensitivity of <200 fN. The NOFT system is tested by monitoring bacterial motion and heart-cell beating as well as detecting infrasound power in solution.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nanofibre optic force transducer calibration.
Figure 2: Detection of bacterial motile force.
Figure 3: Acoustic frequency detection.

Similar content being viewed by others

References

  1. Zlatanova, J., Lindsay, S. M. & Leuba, S. H. Single molecule force spectroscopy in biology using the atomic force microscope. Prog. Biophys. Mol. Biol. 74, 37–61 (2000).

    Article  Google Scholar 

  2. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  Google Scholar 

  3. Neuman, K. C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    Article  Google Scholar 

  4. Clausen-Schaumann, H., Rief, M., Tolksdorf, C. & Gaub, H. E. Mechanical stability of single DNA molecules. Biophys. J. 78, 1997–2007 (2000).

    Article  Google Scholar 

  5. Perkins, T. T. Optical traps for single molecule biophysics: a primer. Laser Photon. Rev. 3, 203–220 (2009).

    Article  ADS  Google Scholar 

  6. Moffitt, J. R., Chemla, Y. R., Smith, S. B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    Article  Google Scholar 

  7. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  ADS  Google Scholar 

  8. Wang, M. D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  ADS  Google Scholar 

  9. Sirbuly, D. J., Friddle, R. W., Villanueva, J. & Huang, Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? Rep. Prog. Phys. 78, 024101 (2015).

    Article  ADS  Google Scholar 

  10. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  ADS  Google Scholar 

  11. Choi, C. L., Koski, K. J., Olson, A. C. K. & Alivisatos, A. P. Luminescent nanocrystal stress gauge. Proc. Natl Acad. Sci. USA 107, 21306–21310 (2010).

    Article  ADS  Google Scholar 

  12. Grashoff, C. et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466, 263–267 (2010).

    Article  ADS  Google Scholar 

  13. Meng, F., Suchyna, T. M. & Sachs, F. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275, 3072–3087 (2008).

    Article  Google Scholar 

  14. Iio, T., Takahashi, S. & Sawada, S. Fluorescent molecular rotor binding to actin. J. Biochem. 113, 196–199 (1993).

    Article  Google Scholar 

  15. Kung, C. E. & Reed, J. K. Microviscosity measurements of phospholipid-bilayers using fluorescent dyes that undergo torsional relaxation. Biochemistry 25, 6114–6121 (1986).

    Article  Google Scholar 

  16. Kuimova, M. K. et al. Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat. Chem. 1, 69–73 (2009).

    Article  Google Scholar 

  17. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004).

    Article  ADS  Google Scholar 

  18. Yoon, I. et al. Nanofiber near-field light-matter interactions for enhanced detection of molecular level displacements and dynamics. Nano Lett. 13, 1440–1445 (2013).

    Article  ADS  Google Scholar 

  19. Gittes, F. & Schmidt, C. F. Thermal noise limitations on micromechanical experiments. Eur. Biophys. J. 27, 75–81 (1998).

    Article  Google Scholar 

  20. Liu, L. L., Kheifets, S., Ginis, V. & Capasso, F. Subfemtonewton force spectroscopy at the thermal limit in liquids. Phys. Rev. Lett. 116, 228001 (2016).

    Article  ADS  Google Scholar 

  21. Huang, Q. et al. Gap controlled plasmon-dielectric coupling effects investigated with single nanoparticle-terminated atomic force microscope probes. Nanoscale 8, 17102–17107 (2016).

    Article  Google Scholar 

  22. Bhushan, B. Nanotribology, nanomechanics and nanomaterials characterization. Phil. Trans. R. Soc. A 366, 1351–1381 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  23. Butt, H. J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

    Article  Google Scholar 

  24. de Gennes, P. G. Polymers at an interface; a simplified view. Adv. Colloid Interface Sci. 27, 189–209 (1987).

    Article  Google Scholar 

  25. Kirchner, S. R. et al. Direct optical monitoring of flow generated by bacterial flagellar rotation. Appl. Phys. Lett. 104, 093701 (2014).

    Article  ADS  Google Scholar 

  26. Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).

    Article  ADS  Google Scholar 

  27. Constantino, M. A., Jabbarzadeh, M., Fu, H. C. & Bansil, R. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2, e1601661 (2016).

    Article  ADS  Google Scholar 

  28. Gittes, F. & Schmidt, C. F. Signals and noise in micromechanical measurements. Methods Cell Biol. 55, 129–156 (1998).

    Article  Google Scholar 

  29. Ohlinger, A., Deak, A., Lutich, A. A. & Feldmann, J. Optically trapped gold nanoparticle enables listening at the microscale. Phys. Rev. Lett. 108, 018101 (2012).

    Article  ADS  Google Scholar 

  30. Shroff, S. G., Saner, D. R. & Lal, R. Dynamic micromechanical properties of cultured rat atrial myocytes measured by atomic-force microscopy. Am. J. Physiol. Cell Physiol. 269, C286–C292 (1995).

    Article  Google Scholar 

  31. Pelling, A. E., Sehati, S., Gralla, E. B., Valentine, J. S. & Gimzewski, J. K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305, 1147–1150 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge X. Qu, W. Zhu, S. Ward and J. Friend for helpful discussions. This work was supported by the National Science Foundation (ECCS 1150952) and the University of California, Office of the President (UC-LFRP 12-LR-238415). Grant support from the California Institute of Regenerative Medicine (grant no. RT3-07899) and the National Institutes of Health (grant no. R01EB021857) to S.C. was greatly appreciated. A part of this project was supported by the National Institute on Aging of National Institutes of Health (grant AG028709). This work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of UCSD, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant no. ECCS-1542148).

Author information

Authors and Affiliations

Authors

Contributions

Q.H., I.Y. and D.J.S. designed the project. Q.H., J.Lee and Y.S. fabricated samples and ran the optical experiments. I.Y. and F.T.A. built the AFM-optical system. J.Lee, F.T.A. and Q.H. ran the AFM experiments. P.A. and S.T. prepared the bacteria solution. J.Liu and X.M. prepared the cell samples. Q.H. and D.J.S. wrote the manuscript. J.Lee, F.T.A., J.V., S.C., L.Z. and R.L. helped edit and revise the manuscript.

Corresponding author

Correspondence to Donald J. Sirbuly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2479 kb)

Supplementary Movie

Supplementary Movie (MP4 34014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Lee, J., Arce, F. et al. Nanofibre optic force transducers with sub-piconewton resolution via near-field plasmon–dielectric interactions. Nature Photon 11, 352–355 (2017). https://doi.org/10.1038/nphoton.2017.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing