Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chip-based wide field-of-view nanoscopy

Abstract

Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Implementation of chip-based nanoscopy.
Figure 2: Demonstration of chip-based dSTORM.
Figure 3: Demonstration of chip-based ESI.
Figure 4: Imaging the same sample under varied acquisition conditions reveals the specific strengths of the different approaches.
Figure 5: Multi-colour chip-based dSTORM reveals the interplay between actin (magenta) and the membrane (green) in LSECs.

Similar content being viewed by others

References

  1. Schermelleh, L., Heintzmann, R. & Leonhardt, H. A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165–175 (2010).

    Article  Google Scholar 

  2. Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  Google Scholar 

  3. Heintzmann, R. & Cremer, C. G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE 3568, 185–196 (1999).

    Article  ADS  Google Scholar 

  4. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  ADS  Google Scholar 

  5. Willig, K. I., Rizzoli, S. O., Westphal, V ., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    Article  ADS  Google Scholar 

  6. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).

    Article  ADS  Google Scholar 

  7. Yahiatène, I., Hennig, S., Müller, M. & Huser, T. Entropy-based super-resolution imaging (ESI): from disorder to fine detail. ACS Photon. 2, 1049–1056 (2015).

    Article  Google Scholar 

  8. Rust, M. J., Bates, M. & Zhuang, X. Stochastic optical reconstruction microscopy (STORM) provides sub-diffraction-limit image resolution. Nat. Methods 3, 793–795 (2006).

    Article  Google Scholar 

  9. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  Google Scholar 

  10. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  11. Hess, S. T., Girirajan, T. P. K. & Mason, M. D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    Article  ADS  Google Scholar 

  12. Hoyer, P., Staudt, T., Engelhardt, J. & Hell, S. W. Quantum dot blueing and blinking enables fluorescent microscopy. Nano Lett. 11, 245–250 (2010).

    Article  ADS  Google Scholar 

  13. Xu, J. Q., Tehrani, K. F. & Kner, P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy. ACS Nano 9, 2917–2925 (2015).

    Article  Google Scholar 

  14. Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K . Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5, 159–161 (2007).

    Article  Google Scholar 

  15. Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article  Google Scholar 

  16. Chen, B. C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  Google Scholar 

  17. Grandin, H. M., Stadler, B., Textor, M. & Voros, J. Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens. Bioelectron. 21, 1476–1482 (2006).

    Article  Google Scholar 

  18. Agnarsson, B., Ingthorsson, S., Gudjonsson, T. & Leosson, K. Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt. Express 17, 5075–5082 (2009).

    Article  ADS  Google Scholar 

  19. Agnarsson, B., Jonsdottir, A. B., Arnfinnsdottir, N. B. & Leosson, K. On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides. Opt. Express 19, 22929–22935 (2011).

    Article  ADS  Google Scholar 

  20. Shen, H. et al. TIRF microscopy with ultra-short penetration depth. Opt. Express 22, 10728–10734 (2014).

    Article  ADS  Google Scholar 

  21. Agnarsson, B. et al. Evanescent light-scattering microscopy for label-free interfacial imaging: from single sub-100 nm vesicles to live cells. ACS Nano 9, 11849–11862 (2015).

    Article  Google Scholar 

  22. Ramachandran, S., Cohen, D. A., Quist, A. P. & Lal, R. High performance, LED powered, waveguide based total internal reflection microscopy. Sci. Rep. 3, 2133 (2013).

    Article  ADS  Google Scholar 

  23. Dhakal, A. et al. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. Opt. Lett. 39, 4025–4028 (2014).

    Article  ADS  Google Scholar 

  24. Fedyanin, D. Y. & Stebunov, Y. V. All-nanophotonic NEMS biosensor on a chip. Sci. Rep. 5, 10968 (2015).

    Article  ADS  Google Scholar 

  25. Yurtsever, G. et al. Photonic integrated Mach–Zehnder interferometer with an on-chip reference arm for optical coherence tomography. Biomed. Opt. Express 5, 1050–1061 (2014).

    Article  Google Scholar 

  26. Sørensen, K. K., Simon-Santamaria, J., McCuskey, R. S. & Smedsrød, B. Liver sinusoidal endothelial cells. Compr. Physiol. 5, 1751–1574 (2015).

    Article  Google Scholar 

  27. Weber, K., Rathke, P. C. & Osborn, M. Cytoplasmic microtubular images in glutaraldehyde-fixed tissue culture cells by electron microscopy and by immunofluorescence microscopy. Proc. Natl Acad. Sci. USA 75, 1820–1824 (1978).

    Article  ADS  Google Scholar 

  28. Olivier, N., Keller, D., Gonczy, P. & Manley, S. Resolution doubling in 3D-STORM imaging through improved buffers. PLoS ONE 8, e69004 (2013).

    Article  ADS  Google Scholar 

  29. Vaughan, J. C., Jia, S. & Zhuang, X. Ultra-bright photoactivatable fluorophores created by reductive caging. Nat. Methods 9, 1181–1184 (2012).

    Article  Google Scholar 

  30. Endesfelder, U. & Heilemann, M. Art and artifacts in single-molecule localization microscopy: beyond attractive images. Nat. Methods 11, 235–238 (2014).

    Article  Google Scholar 

  31. Bourg, N. et al. Direct optical nanoscopy with axially localized detection. Nat. Photon. 9, 587–593 (2015).

    Article  ADS  Google Scholar 

  32. Endesfelder, U., Malkusch, S., Fricke, F. & Heilemann, M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem. Cell Biol. 141, 629–638 (2014).

    Article  Google Scholar 

  33. Nieuwenhuizen, R. P. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).

    Article  Google Scholar 

  34. Banterle, N., Bui, K. H., Lemke, E. A. & Beck, M. Fourier ring correlation as a resolution criterion for super-resolution microscopy. J. Struct. Biol. 183, 363–367 (2013).

    Article  Google Scholar 

  35. Douglass, K. M., Sieben, C., Archetti, A., Lambert, A. & Manley, S. Super-resolution imaging of multiple cells by optimised flat-field epi-illumination. Nat. Photon. 10, 705–708 (2016).

    Article  ADS  Google Scholar 

  36. Smedsrød, B. & Pertoft, H. Preparation of pure hepatocytes and reticuloendothelial cells in high yield from a single rat liver by means of Percoll centrifugation and selective adherence. J. Leukoc. Biol. 38, 213–230 (1985).

    Article  Google Scholar 

  37. Ahluwalia, B. S. et al. Fabrication of submicrometer high refractive index tantalum pentoxide waveguides for optical propulsion of microparticles. IEEE Photon. Technol. Lett. 21, 1408–1410 (2009).

    Article  ADS  Google Scholar 

  38. Ventalon, C. & Mertz, J. Quasi-confocal fluorescence sectioning with dynamic speckle illumination. Opt. Lett. 30, 3350–3352 (2005).

    Article  ADS  Google Scholar 

  39. Kim, M., Park, C., Rodriguez, C., Park, Y. & Cho, Y. H. Superresolution imaging with optical fluctuation using speckle patterns illumination. Sci. Rep. 5, 16525 (2015).

    Article  ADS  Google Scholar 

  40. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9, 1040–1041 (2012).

    Article  Google Scholar 

  41. Smith, C. S., Joseph, N., Rieger, B. & Lidke, K. A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).

    Article  Google Scholar 

  42. Cogger, V. C., Roessner, U., Warren, A., Fraser, R. & Le Couteur, D. G. A sieve-raft hypothesis for the regulation of endothelial fenestrations. Comput. Struct. Biotechnol. J. 8, e201308003 (2013).

    Article  Google Scholar 

  43. Mönkemöller, V. et al. Imaging fenestrations in liver sinusoidal endothelial cells by optical localization microscopy. Phys. Chem. Chem. Phys. 16, 12576–12581 (2014).

    Article  Google Scholar 

  44. Mönkemöller, V., Øie, C., Hübner, W., Huser, T. & McCourt, P. Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations. Sci Rep. 5, 16279 (2015).

    Article  ADS  Google Scholar 

  45. Braet, F. & Wisse, E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol. 1, 1 (2002).

    Article  Google Scholar 

  46. Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656–3662 (2011).

    Article  Google Scholar 

  47. Helle, Ø. I., Ahluwalia, B. S. & Hellesø, O. G. Optical transport, lifting and trapping of micro-particles by planar waveguides. Opt. Express 23, 6601–6612 (2015).

    Article  ADS  Google Scholar 

  48. Dullo, F. T. & Hellesø, O. G. On-chip phase measurement for microparticles trapped on a waveguide. Lab Chip 15, 3918–3924 (2015).

    Article  Google Scholar 

  49. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  ADS  Google Scholar 

  50. Diekmann, R. et al. Nanoscopy of bacterial cells immobilized by holographic optical tweezers. Nat. Commun. 7, 13711 (2016).

    Article  ADS  Google Scholar 

  51. Prieto, F. et al. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14, 907–912 (2003).

    Article  ADS  Google Scholar 

  52. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  Google Scholar 

  53. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article  Google Scholar 

  54. Ovesny, M., Krizek, P., Borkovec, J., Svindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank I. Yahiatène and M. Müller for help with the ESI reconstruction algorithm and V. Mönkemöller for help with sample preparation and membrane dye staining. This work was supported by the European Research Council (grant no. 336716 to B.S.A.), the Research Council of Norway (grant no. 244764/F11 to B.S.A.) and the German Academic Exchange Service (grant no. 57160327 to M.S.). R.D. acknowledges additional support from grant no. KF2140610NT4 of the German Federal Ministry for Economic Affairs and Energy.

Author information

Authors and Affiliations

Authors

Contributions

B.S.A. and M.S. conceived the project. All authors designed the research. C.I.Ø. isolated the cells and stained and prepared the biological samples. R.D. and Ø.I.H. built the set-up, prepared the non-biological samples, performed the experiments, performed the simulations, reconstructed the images, analysed the data and created the figures. R.D., Ø.I.H., M.S. and B.S.A. mainly wrote the paper. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mark Schüttpelz or Balpreet S. Ahluwalia.

Ethics declarations

Competing interests

M.S. and B.S.A. have applied for patent GB1606268.9 for chip-based optical nanoscopy. The other authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 12523 kb)

Supplementary information

Supplementary Movie 1 (AVI 2049 kb)

Supplementary information

Supplementary Movie 2 (MP4 2111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diekmann, R., Helle, Ø., Øie, C. et al. Chip-based wide field-of-view nanoscopy. Nature Photon 11, 322–328 (2017). https://doi.org/10.1038/nphoton.2017.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.55

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing