Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Population inversion and giant bandgap renormalization in atomically thin WS2 layers

Subjects

Abstract

Control of the optical properties of matter on ultrashort timescales is of both fundamental interest and central importance for applications in photonics. It is desirable to achieve pronounced changes over a broad spectral range using the least possible amount of material. Here, we demonstrate a dramatic change over a spectral range of hundreds of meV on the femtosecond timescale in the optical response of atomically thin two-dimensional crystals of the transition-metal dichalcogenide WS2 following excitation by intense optical pump pulses. Our findings reveal the role of extremely strong Coulomb interactions. At the direct gap, we observe a Mott transition from excitonic states to free carriers, accompanied by a giant bandgap renormalization of approximately 500 meV and the development of population inversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoinduced optical response of WS2 bilayers.
Figure 2: Optical absorption of a two-dimensional semiconductor in the presence of high electron–hole densities.
Figure 3: Evolution of the population inversion with pump fluence.
Figure 4: Photoinduced optical response of WS2 monolayers.

Similar content being viewed by others

References

  1. Klingshirn, C. & Haug, H. Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70, 315–398 (1981).

    Article  ADS  Google Scholar 

  2. Moskalenko, S. A. & Snoke, D. W. Bose–Einstein Condensation of Excitons and Biexcitons (Cambridge Univ. Press, 2005).

    Google Scholar 

  3. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  4. Almand-Hunter, A. E. et al. Quantum droplets of electrons and holes. Nature 506, 471–475 (2014).

    Article  ADS  Google Scholar 

  5. Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

    Article  ADS  Google Scholar 

  6. Klingshirn, C. Semiconductor Optics 3rd edn (Springer, 2007).

    Book  Google Scholar 

  7. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors 5th edn (World Scientific, 2009).

    Book  Google Scholar 

  8. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  9. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  ADS  Google Scholar 

  10. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    Article  Google Scholar 

  11. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    Article  Google Scholar 

  12. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  13. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  14. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 . Phys. Rev. B 90, 205422 (2014).

    Article  ADS  Google Scholar 

  15. Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).

    Article  ADS  Google Scholar 

  16. He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014).

    Article  ADS  Google Scholar 

  17. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  18. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

    Article  ADS  Google Scholar 

  19. Ugeda, M. M. et al. Observation of giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091 (2014).

    Article  ADS  Google Scholar 

  20. Steinhoff, A., Rösner, M., Jahnke, F., Wehling, T. O. & Gies, C. Influence of excited carriers on the optical and electronic properties of MoS2 . Nano Lett. 14, 3743–3748 (2014).

    Article  ADS  Google Scholar 

  21. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).

    Article  ADS  Google Scholar 

  22. Wang, R. et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86, 045406 (2012).

    Article  ADS  Google Scholar 

  23. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013).

    Article  Google Scholar 

  24. Wang, Q. et al. Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump–probe spectroscopy. ACS Nano 7, 11087–11093 (2013).

    Article  Google Scholar 

  25. Sim, S. et al. Exciton dynamics in atomically thin MoS2: interexcitonic interaction and broadening kinetics. Phys. Rev. B 88, 075434 (2013).

    Article  ADS  Google Scholar 

  26. Kozawa, D. et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nature Commun. 5, 4543 (2014).

    Article  ADS  Google Scholar 

  27. Mai, C. et al. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2 . Nano Lett. 14, 202–206 (2014).

    Article  ADS  Google Scholar 

  28. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014).

    Article  ADS  Google Scholar 

  29. Singh, A. et al. Coherent electronic coupling in atomically thin MoSe2 . Phys. Rev. Lett. 112, 216804 (2014).

    Article  ADS  Google Scholar 

  30. Kumar, N. et al. Exciton–exciton annihilation in MoSe2 monolayers. Phys. Rev. B 89, 125427 (2014).

    Article  ADS  Google Scholar 

  31. Cui, Q., Ceballos, F., Kumar, N. & Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2 . ACS Nano 8, 2970–2976 (2014).

    Article  Google Scholar 

  32. Mouri, S. et al. Nonlinear photoluminescence in atomically thin layered WSe2 arising from diffusion-assisted exciton–exciton annihilation. Phys. Rev. B 90, 155449 (2014).

    Article  ADS  Google Scholar 

  33. He, J. et al. Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures. Nature Commun. 5, 5622 (2014).

    Article  ADS  Google Scholar 

  34. Wang, G. et al. Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2 . Phys. Rev. B 90, 075413 (2014).

    Article  ADS  Google Scholar 

  35. Sun, D. et al. Observation of rapid exciton–exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 14, 5625–5629 (2014).

    Article  ADS  Google Scholar 

  36. Chow, W. W. et al. Comparison of experimental and theoretical GaInP quantum well gain spectra. Appl. Phys. Lett. 71, 157 (1997).

    Article  ADS  Google Scholar 

  37. Ellmers, C. et al. Measurement and calculation of gain spectra for (GaIn)As/(AlGa)As single quantum well lasers. Appl. Phys. Lett. 72, 1647 (1998).

    Article  ADS  Google Scholar 

  38. Lange, C. et al. Transient gain spectroscopy of (GaIn)As quantum wells: experiment and microscopic analysis. Appl. Phys. Lett. 90, 251102 (2007).

    Article  ADS  Google Scholar 

  39. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  40. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    Article  ADS  Google Scholar 

  41. Hecht, E. Optics 4th edn (Addison-Wesley, 2001).

    Google Scholar 

  42. Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  ADS  Google Scholar 

  43. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Article  ADS  Google Scholar 

  44. Lange, C. et al. Ultrafast nonlinear optical response of photoexcited Ge/SiGe quantum wells: evidence for a femtosecond transient population inversion. Phys. Rev. B 79, 201306 (2009).

    Article  ADS  Google Scholar 

  45. Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2 . Nano Lett. 13, 5627–5634 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, with funding at Columbia University through the Energy Frontier Research Center under Grant DE-SC0001085 and at SLAC National Accelerator Laboratory through the AMOS programme within the Chemical Sciences, Geosciences and Biosciences Division, by the Keck Foundation, and by the Air Force Office of Scientific Research (grant no. FA9550-14-1-0268). C.R. and A.C. acknowledge partial funding from the Alexander von Humboldt Foundation within the Feodor Lynen Research Fellowship programme. H.M.H. and A.F.R. were supported, respectively, by the NSF through an IGERT Fellowship (grant no. DGE-1069240) and by a Graduate Research Fellowship (DGE-1144155).

Author information

Authors and Affiliations

Authors

Contributions

A.C. and C.R., contributing equally to this work, designed the experiment, carried out the measurements and analysed the data. H.M.H. and A.F.R. prepared and characterized the samples. A.C., C.R. and T.F.H. wrote the manuscript. All authors contributed to discussions.

Corresponding authors

Correspondence to Alexey Chernikov or Tony F. Heinz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernikov, A., Ruppert, C., Hill, H. et al. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nature Photon 9, 466–470 (2015). https://doi.org/10.1038/nphoton.2015.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2015.104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing