Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy

Abstract

Advances in silicon photonics have resulted in rapidly increasing complexity in integrated circuits. New methods that allow the direct characterization of individual optical components in situ, without the need for additional fabrication steps or test structures, are desirable. Here, we present a device-level method for the characterization of photonic chips based on a highly localized modulation in the device using pulsed laser excitation. Optical pumping perturbs the refractive index of silicon, providing a spatially and temporally localized modulation in the transmitted light, enabling time- and frequency-resolved imaging. We demonstrate the versatility of this all-optical modulation technique in imaging and in the quantitative characterization of a range of properties of silicon photonic devices, from group indices in waveguides, to quality factors of a ring resonator, and to the mode structure of a multimode interference device. Ultrafast photomodulation spectroscopy provides important information on devices of complex design, and is easily applicable for testing at the device level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the UPMS set-up.
Figure 2: Quantification of the complex effective index change.
Figure 3: Group index measurements.
Figure 4: Q-factor measurements in a ring resonator.
Figure 5: Resonances of Vernier racetracks.
Figure 6: Mode pattern mapping in an MMI device.

Similar content being viewed by others

References

  1. Soref, R. Silicon photonics: a review of recent literature. Silicon 2, 1–6 (2010).

    Article  Google Scholar 

  2. Passaro, V. M. N. et al. Recent advances in integrated photonic sensors. Sensors 12, 15558–15598 (2012).

    Article  Google Scholar 

  3. Jalali, B. & Fathpour, S. Silicon photonics. J. Lightwave Technol. 24, 4600–4614 (2006).

    Article  ADS  Google Scholar 

  4. Yamada, K. et al. High-performance silicon photonics technology for telecommunications applications. Sci. Technol. Adv. Mater. 15, 024603 (2014).

    Article  Google Scholar 

  5. Kuramochi et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nature Photon. 8, 474–481 (2014).

    Article  ADS  Google Scholar 

  6. Beaud, P. et al. Optical reflectometry with micrometer resolution for the investigation of integrated optical devices. IEEE J. Quant. Electron. 25, 755–759 (1989).

    Article  ADS  Google Scholar 

  7. Youngquist, R. C., Carr, S. & Davies D. E. N. Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987).

    Article  ADS  Google Scholar 

  8. Kohlhaas, A., Frömchen, C. & Brinkmeyer, E. High-resolution OCDR for testing integrated-optical waveguides: dispersion-corrupted experimental data corrected by a numerical algorithm. J. Lightwave Technol. 9, 1493–1502 (1991).

    Article  ADS  Google Scholar 

  9. Glombitza, U. & Brinkmeyer, E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides. J. Lightwave Technol. 11, 1377–1384 (1993).

    Article  ADS  Google Scholar 

  10. Loncar, M. et al. Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides. Appl. Phys. Lett. 80, 1689–1691 (2002).

    Article  ADS  Google Scholar 

  11. McNab, S. J., Moll, N. & Vlasov, Y. A. Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 22, 2927–2939 (2003).

    Article  ADS  Google Scholar 

  12. Hopman, W. C. L., Hoekstra, H. J. W. M., Dekker, D., Zhuang, L. & de Ridder, R. M. Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings. Opt. Express 15, 1851–1870 (2007).

    Article  ADS  Google Scholar 

  13. García, P. D., Smolka, S., Stobbe, S. & Lodahl, P. Density of states controls Anderson localization in disordered photonic crystal waveguides. Phys. Rev. B 82, 165103 (2010).

    Article  ADS  Google Scholar 

  14. Sapienza, R. et al. Deep-subwavelength imaging of the modal dispersion of light. Nature Mater. 11, 781–787 (2012).

    Article  ADS  Google Scholar 

  15. Gersen, H. et al. Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903 (2005).

    Article  ADS  Google Scholar 

  16. Engelen, R. J. P. et al. Ultrafast evolution of photonic eigenstates in k-space. Nature Phys. 3, 401–405 (2007).

    Article  ADS  Google Scholar 

  17. Kramper, P. et al. Near-field visualization of light confinement in a photonic crystal microresonator. Opt. Lett. 29, 174–176 (2004).

    Article  ADS  Google Scholar 

  18. Koenderink, A. F., Kafesaki, M., Buchler, B. C. & Sandoghdar, V. Controlling the resonance of a photonic crystal microcavity by a near-field probe. Phys. Rev. Lett. 95, 153904 (2005).

    Article  ADS  Google Scholar 

  19. Märki, I., Salt, M. & Herzig, H. P. Tuning the resonance of a photonic crystal microcavity with an AFM probe. Opt. Express 14, 2969–2978 (2006).

    Article  ADS  Google Scholar 

  20. Hopman, W. C. L. et al. Nano-mechanical tuning and imaging of a photonic crystal micro-cavity resonance. Opt. Express 14, 8745–8752 (2006).

    Article  ADS  Google Scholar 

  21. Robinson, J. T., Preble, S. F. & Lipson, M. Imaging highly confined modes in sub-micron scale silicon waveguides using transmission-based near-field scanning optical microscopy. Opt. Express 14, 10588–10595 (2006).

    Article  ADS  Google Scholar 

  22. Burresi, M. et al. Magnetic light–matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2006).

    Article  ADS  Google Scholar 

  23. Lalouat, L. et al. Near-field interactions between a subwavelength tip and a small-volume photonic-crystal nanocavity. Phys. Rev. B 76, 041102(R) (2007).

    Article  ADS  Google Scholar 

  24. Burresi, M. et al. Probing the magnetic field of light at optical frequencies. Science 326, 550–553 (2009).

    Article  ADS  Google Scholar 

  25. Gersen, H., Korterik, J. P., van Hulst, N. F. & Kuipers, L. Tracking ultrashort pulses through dispersive media: experiment and theory. Phys. Rev. E 68, 026604 (2003).

    Article  ADS  Google Scholar 

  26. Beggs, D. M. et al. Ultrafast tunable optical delay line based on indirect photonic transitions. Phys. Rev. Lett. 108, 213901 (2012).

    Article  ADS  Google Scholar 

  27. Beggs, D. M., Krauss, T. F., Kuipers, L. & Kampfrath, T. Ultrafast tilting of the dispersion of a photonic crystal and adiabatic spectral compression of light pulses. Phys. Rev. Lett. 108, 033902 (2012).

    Article  ADS  Google Scholar 

  28. Opheij, A. et al. Ultracompact (3 µm) silicon slow-light optical modulator. Sci. Rep. 3, 3546 (2013).

    Article  Google Scholar 

  29. Liang, T. K. et al. Ultrafast nonlinear optical studies of silicon nanowaveguides. Opt. Express 13, 7298–7303 (2005).

    Article  ADS  Google Scholar 

  30. Slavik, R., Park, Y., Kulishov, M., Morandotti, R. & Azana, J. Ultrafast all-optical differentiators. Opt. Express 14, 10699–10707 (2006).

    Article  ADS  Google Scholar 

  31. Preble, S. F., Xu, Q., Schmidt, B. S. & Lipson M. Ultrafast all-optical modulation on a silicon chip. Opt. Lett. 30, 2891–2893 (2005).

    Article  ADS  Google Scholar 

  32. Upham, J. et al. The capture, hold and forward release of an optical pulse from a dynamic photonic crystal nanocavity. Opt. Express 21, 3809–3817 (2013).

    Article  ADS  Google Scholar 

  33. Kondo, K. et al. Ultrafast slow-light tuning beyond the carrier lifetime using photonic crystal waveguides. Phys. Rev. Lett. 110, 053902 (2013).

    Article  ADS  Google Scholar 

  34. Motamedi, A. R., Nejadmalayeri, A. H., Khilo, A., Kärtner, F. X. & Ippen, E. P. Ultrafast nonlinear optical studies of silicon nanowaveguides. Opt. Express 20, 4085–4101 (2012).

    Article  ADS  Google Scholar 

  35. Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    Article  ADS  Google Scholar 

  36. Sokolowski-Tinten, K. & von der Linde, D. Generation of dense electron–hole plasmas in silicon. Phys. Rev. B 61, 2643–2650 (2000).

    Article  ADS  Google Scholar 

  37. Sabbah, A. J. & Riffe, D. M. Femtosecond pump–probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002).

    Article  ADS  Google Scholar 

  38. Kampfrath, T. et al. Ultrafast rerouting of light via slow modes in a nanophotonic directional coupler. Appl. Phys. Lett. 94, 241119 (2009).

    Article  ADS  Google Scholar 

  39. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 483, 65–69 (2005).

    Article  ADS  Google Scholar 

  40. Letartre, X. et al. Group velocity and propagation losses measurement in a single-line photonic-crystal waveguide on InP membranes. Appl. Phys. Let. 79, 2312–2314 (2001).

    Article  ADS  Google Scholar 

  41. Lee, M. W. et al. Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling technique. Opt. Express 16, 13800–13808 (2008).

    Article  ADS  Google Scholar 

  42. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  ADS  Google Scholar 

  43. Finlayson, C. E. et al. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Phys. Rev. E 73, 016619 (2006).

    Article  ADS  Google Scholar 

  44. Dulkeith, E., Xia, F., Schares, L., Green, W. M. J. & Vlasov, Y. A. Group index and group velocity dispersion in silicon-on-insulator photonic wires. Opt. Express 14, 3853–3863 (2006).

    Article  ADS  Google Scholar 

  45. Niehusmann, J. et al. Ultrahigh-quality-factor silicon-on-insulator microring resonator. Opt. Lett. 29, 2861–2863 (2004).

    Article  ADS  Google Scholar 

  46. Baehr-Jones, T., Hochberg, M., Walker, C. & Scherer, A. High-Q optical resonators in silicon-on-insulator-based slot waveguides. Appl. Phys. Lett. 86, 081101 (2005).

    Article  ADS  Google Scholar 

  47. Almeida, V. R., Barrios, C. A., Panepucci, R. R. & Lipson, M. All-optical control of light on a silicon chip. Nature  431, 1081–1084 (2004).

    Article  ADS  Google Scholar 

  48. Passaro, V. M. N., Troia, B. & De Leonardis, B. A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR. Sens. Actuat. B 168, 402–420 (2012).

    Article  Google Scholar 

  49. Xu, Q. & Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) (grant no. EP/J016918).

Author information

Authors and Affiliations

Authors

Contributions

R.B. and O.L.M. developed the UPMS set-up. R.B. performed the presented experiments. Data analysis and theoretical background was carried out by R.B. and O.L.M. B.M. was responsible for the laser system and contributed to the development of the set-up. D.J.T., F.Y.G., Y.H., G.Z.M. and G.T.R. designed and fabricated the characterized samples in Figs 2,  4 and  6. B.T., G.Z.M. and V.N.M.P. designed and fabricated the sample characterized in Fig. 5 and in Supplementary Fig. 1. R.B. and O.L.M wrote the paper in consultation with all authors.

Corresponding author

Correspondence to Roman Bruck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruck, R., Mills, B., Troia, B. et al. Device-level characterization of the flow of light in integrated photonic circuits using ultrafast photomodulation spectroscopy. Nature Photon 9, 54–60 (2015). https://doi.org/10.1038/nphoton.2014.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2014.274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing