Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer solar cells with enhanced fill factors

Abstract

Recent advances in polymer solar cell (PSC) performance have resulted from compressing the bandgap to enhance the short-circuit current while lowering the highest occupied molecular orbital to increase the open-circuit voltage. Nevertheless, PSC power conversion efficiencies are still constrained by low fill factors, typically below 70%. Here, we report PSCs with exceptionally high fill factors by combining complementary materials design, synthesis, processing and device engineering strategies. The donor polymers, PTPD3T and PBTI3T, when incorporated into inverted bulk-heterojunction PSCs with a PC71BM acceptor, result in PSCs with fill factors of 76–80%. The enhanced performance is attributed to highly ordered, closely packed and properly oriented active-layer microstructures with optimal horizontal phase separation and vertical phase gradation. The result is efficient charge extraction and suppressed bulk and interfacial bimolecular recombination. The high fill factors yield power conversion efficiencies of up to 8.7% from polymers with suboptimal bandgaps, suggesting that efficiencies above 10% should be realizable by bandgap modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Macromolecular building blocks, structures, optical absorption spectra, DSC thermograms and X-ray scattering patterns of the semiconducting polymers.
Figure 2: Device architecture and performance of inverted BHJ polymer solar cells.
Figure 3: GIWAXS data for neat and BHJ blend polymer films.
Figure 4: Morphology of a PBTI3T:PC71BM film yielding optimal solar cell performance.
Figure 5: TPC and TPV analysis of BHJ inverted solar cells fabricated using CF as the solvent with or without DIO as the processing additive.

Similar content being viewed by others

References

  1. Yu, G., Gao, J., Hummelen, J. C., Wudl, F. & Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789–1791 (1995).

    Article  ADS  Google Scholar 

  2. Cheng, Y-J., Yang, S-H. & Hsu, C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  Google Scholar 

  3. He, Z. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636–4643 (2011).

    Article  Google Scholar 

  4. He, Z. C. et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photon. 6, 591–595 (2012).

    Article  ADS  Google Scholar 

  5. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 40). Prog. Photovolt. 20, 606–614 (2012).

    Article  Google Scholar 

  6. Scharber, M. C. et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006).

    Article  Google Scholar 

  7. Mihailetchi, V. D., Xie, H. X., de Boer, B., Koster, L. J. A. & Blom, P. W. M. Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699–708 (2006).

    Article  Google Scholar 

  8. Wagner, J. et al. High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv. Funct. Mater. 20, 4295–4303 (2010).

    Article  Google Scholar 

  9. Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).

    Article  ADS  Google Scholar 

  10. Clarke, T. M. et al. Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Org. Electron. 13, 2639–2646 (2012).

    Article  Google Scholar 

  11. Shuttle, C. G., Hamilton, R., O'Regan, B. C., Nelson, J. & Durrant, J. R. Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proc. Natl Acad. Sci. USA 107, 16448–16452 (2010).

    Article  ADS  Google Scholar 

  12. Zhang, Y., Dang, X. D., Kim, C. & Nguyen, T. Q. Effect of charge recombination on the fill factor of small molecule bulk heterojunction solar cells. Adv. Energy Mater. 1, 610–617 (2011).

    Article  Google Scholar 

  13. Cowan, S. R., Banerji, N., Leong, W. L. & Heeger, A. J. Charge formation, recombination, and sweep-out dynamics in organic solar cells. Adv. Funct. Mater. 22, 1116–1128 (2012).

    Article  Google Scholar 

  14. Kirchartz, T., Pieters, B. E., Kirkpatrick, J., Rau, U. & Nelson, J. Recombination via tail states in polythiophene: fullerene solar cells. Phys. Rev. B 83, 115209 (2011).

    Article  ADS  Google Scholar 

  15. Cowan, S. R., Roy, A. & Heeger, A. J. Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010).

    Article  ADS  Google Scholar 

  16. Koster, L. J. A., Mihailetchi, V. D., Ramaker, R. & Blom, P. W. M. Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Appl. Phys. Lett. 86, 123509 (2005).

    Article  ADS  Google Scholar 

  17. Shuttle, C. G. et al. Bimolecular recombination losses in polythiophene: fullerene solar cells. Phys. Rev. B 78, 113201 (2008).

    Article  ADS  Google Scholar 

  18. Credgington, D., Hamilton, R., Atienzar, P., Nelson, J. & Durrant, J. R. Non-geminate recombination as the primary determinant of open-circuit voltage in polythiophene:fullerene blend solar cells: an analysis of the influence of device processing conditions. Adv. Funct. Mater. 21, 2744–2753 (2011).

    Article  Google Scholar 

  19. Street, R. A., Schoendorf, M., Roy, A. & Lee, J. H. Interface state recombination in organic solar cells. Phys. Rev. B 81, 205307 (2010).

    Article  ADS  Google Scholar 

  20. Mauer, R., Howard, I. A. & Laquai, F. Effect of nongeminate recombination on fill factor in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett. 1, 3500–3505 (2010).

    Article  Google Scholar 

  21. Mauer, R., Howard, I. A. & Laquai, F. Effect of external bias on nongeminate recombination in polythiophene/methanofullerene organic solar cells. J. Phys. Chem. Lett. 2, 1736–1741 (2011).

    Article  Google Scholar 

  22. Proctor, C. M., Kim, C., Neher, D. & Nguyen, T-Q. Nongeminate recombination and charge transport limitations in diketopyrrolopyrrole-based solution-processed small molecule solar cells. Adv. Funct. Mater. http://dx.doi.org/10.1002/adfm.201202643.

  23. Green, M. A. Solar-cell fill factors: general graph and empirical expressions. Solid-State Electron. 24, 788–789 (1981).

    Article  ADS  Google Scholar 

  24. Kippelen, B. & Bredas, J. L. Organic photovoltaics. Energy Environ. Sci. 2, 251–261 (2009).

    Article  Google Scholar 

  25. Zhao, J., Wang, A. & Green, M. A. 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates. Prog. Photovolt. 7, 471–474 (1999).

    Article  Google Scholar 

  26. McCulloch, I. et al. Semiconducting thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv. Mater. 21, 1091–1109 (2009).

    Article  Google Scholar 

  27. Guo, X. et al. Bithiopheneimide-dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure–property–device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. J. Am. Chem. Soc. 134, 18427–18439 (2012).

    Article  Google Scholar 

  28. Ko, S. et al. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J. Am. Chem. Soc. 134, 5222–5232 (2012).

    Article  Google Scholar 

  29. Dimitrov, S. D. et al. On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends. J. Am. Chem. Soc. 134, 18189–18192 (2012).

    Article  Google Scholar 

  30. Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    Article  ADS  Google Scholar 

  31. Chabinyc, M. L. X-ray scattering from films of semiconducting polymers. Polym. Rev. 48, 463–492 (2008).

    Article  Google Scholar 

  32. Szarko, J. M. et al. When function follows form: effects of donor copolymer side chains on film morphology and BHJ solar cell performance. Adv. Mater. 22, 5468–5472 (2010).

    Article  Google Scholar 

  33. Chou, C. H., Kwan, W. L., Hong, Z., Chen, L. M. & Yang, Y. A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv. Mater. 23, 1282–1286 (2011).

    Article  Google Scholar 

  34. Peet, J., Heeger, A. J. & Bazan, G. C. ‘Plastic’ solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation. Acc. Chem. Res. 42, 1700–1708 (2009).

    Article  Google Scholar 

  35. Rivnay, J. et al. Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 5246–5255 (2011).

    Article  ADS  Google Scholar 

  36. Lilliu, S. et al. Dynamics of crystallization and disorder during annealing of P3HT/PCBM bulk heterojunctions. Macromolecules 44, 2725–2734 (2011).

    Article  ADS  Google Scholar 

  37. Rogers, J. T., Schmidt, K., Toney, M. F., Kramer, E. J. & Bazan, G. C. Structural order in bulk heterojunction films prepared with solvent additives. Adv. Mater. 23, 2284–2288 (2011).

    Article  Google Scholar 

  38. Piliego, C. et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 7595–7597 (2010).

    Article  Google Scholar 

  39. Osaka, I. et al. Synthesis, characterization, and transistor and solar cell applications of a naphthobisthiadiazole-based semiconducting polymer. J. Am. Chem. Soc. 134, 3498–3507 (2012).

    Article  Google Scholar 

  40. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  ADS  Google Scholar 

  41. Tada, A., Geng, Y., Wei, Q., Hashimoto, K. & Tajima, K. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nature Mater. 10, 450–455 (2011).

    Article  ADS  Google Scholar 

  42. Bjorstrom, C. M. et al. Vertical phase separation in spin-coated films of a low bandgap polyfluorene/PCBM blend: effects of specific substrate interaction. Appl. Surf. Sci. 253, 3906–3912 (2007).

    Article  ADS  Google Scholar 

  43. Wobkenberg, P. H. et al. Low-voltage organic transistors based on solution processed semiconductors and self-assembled monolayer gate dielectrics. Appl. Phys. Lett. 93, 013303 (2008).

    Article  ADS  Google Scholar 

  44. Bronstein, H. et al. Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 133, 3272–3275 (2011).

    Article  Google Scholar 

  45. Parmer, J. E. et al. Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). Appl. Phys. Lett. 92, 113309 (2008).

    Article  ADS  Google Scholar 

  46. Shuttle, C. G. et al. Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: analysis of the origin of the device dark current. Appl. Phys. Lett. 93, 183501 (2008).

    Article  ADS  Google Scholar 

  47. Maurano, A. et al. Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv. Mater. 22, 4987–4992 (2010).

    Article  Google Scholar 

  48. Li, Z., Gao, F., Greenham, N. C. & McNeill, C. R. Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv. Funct. Mater. 21, 1419–1431 (2011).

    Article  Google Scholar 

  49. Mandoc, M. M., Kooistra, F. B., Hummelen, J. C., de Boer, B. & Blom, P. W. M. Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 91, 263505 (2007).

    Article  ADS  Google Scholar 

  50. McArthur, E. A., Morris-Cohen, A. J., Knowles, K. E. & Weiss, E. A. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. J. Phys. Chem. B 114, 14514–14520 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences (award no. DE-SC0001059), by Polyera Corporation, and by AFOSR (FA9550-08-1-0331). The authors acknowledge the NSF-MRSEC programme of the Northwestern University Materials Research Science and Engineering Center for characterization facilities (DMR-1121262) and the Institute for Sustainability and Energy at Northwestern (ISEN) for partial funding for equipment. The microscopy work was performed in the EPIC facility of the NUANCE Center at Northwestern University, which is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois and Northwestern University. X.G. acknowledges financial support from an SUSTC start-up fund. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). R.P.O. acknowledges the MICINN of Spain for a Ramòn y Cajal research contract. J.T.L.N. acknowledges financial support from the MICINN (project no. CTQ2012-33733) and the Junta de Andalucía (project no. PO9-4708). D.B.T. is funded by the NSF-IGERT Program.

Author information

Authors and Affiliations

Authors

Contributions

X.G. designed and performed materials synthesis and characterization. N.Z. fabricated the solar cell device and characterized the film morphology using XRD, AFM, TEM and XPS. S.J.L. and J.St. performed two-dimensional GIWAXS film characterization. J.W.H. (OFET) and J.Sm. (SCLC) characterized charge carrier mobility. R.P.O. and J.T.L.N. performed DFT calculations. N.Z. and S.L. characterized the film morphology by cross-sectional TEM. N.Z., J.Sm. and D.B.T. carried out transient photovoltage and photocurrent measurements. X.G., N.Z. and T.J.M. prepared the manuscript. All authors discussed the results and commented on the manuscript. L.X.C., R.P.H.C., A.F. and T.J.M. supervised the project.

Corresponding authors

Correspondence to Lin X. Chen, Robert P. H. Chang, Antonio Facchetti or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Zhou, N., Lou, S. et al. Polymer solar cells with enhanced fill factors. Nature Photon 7, 825–833 (2013). https://doi.org/10.1038/nphoton.2013.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing