Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Resonant and nonresonant control over matter and light by intense terahertz transients

Abstract

Electromagnetic radiation in the terahertz (THz) frequency range is a fascinating spectroscopic tool that provides resonant access to fundamental modes, including the motions of free electrons, the rotations of molecules, the vibrations of crystal lattices and the precessions of spins. Consequently, THz waves have been extensively used to probe such responses with high sensitivity. However, owing to recent developments in high-power sources, scientists have started to abandon the role of pure observers and are now exploiting intense THz radiation to engineer transient states of matter. This Review provides an overview and illustrative examples of how the electric and magnetic fields of intense THz transients can be used to control matter and light resonantly and nonresonantly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme for controlling matter using strong THz transients.
Figure 2: Resonant THz control over ionic lattice dynamics and molecular rotation.
Figure 3: Manipulating spins with THz magnetic fields.
Figure 4: Resonant THz control over free and bound electrons.
Figure 5: Strong-field THz control.
Figure 6: Controlling light by THz radiation.

Similar content being viewed by others

References

  1. Chichkov, B. N., Momma, C., Nolte, S., von Alvensleben, F. & Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996).

    Article  ADS  Google Scholar 

  2. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the “single-cycle” regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  3. Beard, M. C., Turner, G. M. & Schmuttenmaer, C. A. Terahertz spectroscopy. J. Phys. Chem. B 106, 7146–7159 (2002).

    Article  Google Scholar 

  4. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  5. Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    Article  ADS  Google Scholar 

  6. Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging — modern techniques and applications. Laser Photon. Rev. 5, 124–166 (2011).

    Article  ADS  Google Scholar 

  7. Baxter, J. B. & Guglietta, G. W. Terahertz spectroscopy. Anal. Chem. 83, 4342–4368 (2011).

    Article  Google Scholar 

  8. Ganichev, S. D. & Prettl, W. Intense Terahertz Excitation of Semiconductors (Oxford Univ. Press, 2006).

    Google Scholar 

  9. Hoffmann, M. C. Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E., Zeitler, A. & Kuwata-Gonokami, M.) Ch. 14 (Springer Series in Optical Sciences 171, Springer, 2013).

    Google Scholar 

  10. Hirori, H., Doi, A., Blanchard, F. & Tanaka, K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3 . Appl. Phys. Lett. 98, 091106 (2011).

    Article  ADS  Google Scholar 

  11. Katayama, I. et al. Ferroelectric soft mode in a SrTiO3 thin film impulsively driven to the anharmonic regime using intense picosecond terahertz pulses. Phys. Rev. Lett. 108, 097401 (2012).

    Article  ADS  Google Scholar 

  12. Qi, T., Shin, Y.-H., Yeh, K.-L., Nelson, K. A. & Rappe, A. M. Collective coherent control: synchronization of polarization in ferroelectric PbTiO3 by shaped THz fields. Phys. Rev. Lett. 102, 247603 (2009).

    Article  ADS  Google Scholar 

  13. Fritz, D. M. et al. Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays. Science 315, 633–636 (2007).

    Article  ADS  Google Scholar 

  14. Daranciang, D. et al. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett. 108, 087601 (2012).

    Article  ADS  Google Scholar 

  15. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  16. Caviglia, A. D. et al. Ultrafast strain engineering in complex oxide heterostructures. Phys. Rev. Lett. 108, 136801 (2012).

    Article  ADS  Google Scholar 

  17. Harde, H., Keiding, S. & Grischkowsky, D. THz commensurate echoes: periodic rephasing of molecular transitions in free-induction decay. Phys. Rev. Lett. 66, 1834–1837 (1991).

    Article  ADS  Google Scholar 

  18. Bigourd, D. et al. Rotational spectroscopy and dynamics of carbonyl sulphide studied by terahertz free induction decays signals. Opt. Commun. 281, 3111–3119 (2008).

    Article  ADS  Google Scholar 

  19. Fleischer, S., Zhou, Y., Field, R. W. & Nelson, K. A. Molecular orientation and alignment by intense single-cycle THz pulses. Phys. Rev. Lett. 107, 163603 (2011).

    Article  ADS  Google Scholar 

  20. Fleischer, S., Field, R. W. & Nelson, K. A. Commensurate two-quantum coherences induced by time-delayed THz fields. Phys. Rev. Lett. 109, 123603 (2012).

    Article  ADS  Google Scholar 

  21. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer Series in Solid-State Sciences 152, Springer, 2006).

    Google Scholar 

  22. Hiebert, W. K., Stankiewicz, A. & Freeman, M. R. Direct observation of magnetic relaxation in a small permalloy disk by time-resolved scanning Kerr microscopy. Phys. Rev. Lett. 79, 1134–1137 (1997).

    Article  ADS  Google Scholar 

  23. Wang, Z. et al. Spin dynamics triggered by subterahertz magnetic field pulses. J. Appl. Phys. 103, 123905 (2008).

    Article  ADS  Google Scholar 

  24. Ruchert, C. et al. Field-driven femtosecond magnetization dynamics induced by ultrastrong coupling to THz transients. Preprint at http://lanl.arxiv.org/abs/1209.1280 (2012).

  25. Back, C. H. et al. Magnetization reversal in ultrashort magnetic field pulses. Phys. Rev. Lett. 81, 3251–3254 (1998).

    Article  ADS  Google Scholar 

  26. Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nature Photon. 5, 31–34 (2011).

    Article  ADS  Google Scholar 

  27. Yamaguchi, K., Nakajima, M. & Suemoto, T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett. 105, 237201 (2010).

    Article  ADS  Google Scholar 

  28. Arikawa, T. et al. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Phys. Rev. B 84, 241307(R) (2011).

    Article  ADS  Google Scholar 

  29. Jin, Z. et al. Single-pulse terahertz coherent control of spin resonance in the canted antiferromagnet YFeO3, mediated by dielectric anisotropy. Phys. Rev. B 87, 094422 (2013).

    Article  ADS  Google Scholar 

  30. Liu, J. & Zhang, X.-C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Phys. Rev. Lett. 103, 235002 (2009).

    Article  ADS  Google Scholar 

  31. Kampfrath, T. et al. Long- and short-lived electrons with anomalously high collision rates in laser-ionized gases. Phys. Rev. E 76, 066401 (2007).

    Article  ADS  Google Scholar 

  32. Liu, J., Dai, J., Chin, S. L. & Zhang, X.-C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photon. 4, 627–631 (2010).

    Article  ADS  Google Scholar 

  33. Clough, B., Dai, J. & Zhang, X.-C. Laser air photonics: beyond the terahertz gap. Mater. Today 15, 50–58 (2012).

    Article  Google Scholar 

  34. Leinß, S. et al. Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101, 246401 (2008).

    Article  ADS  Google Scholar 

  35. Wagner, M. et al. Observation of the intraexciton Autler–Townes effect in GaAs/AlGaAs semiconductor quantum wells. Phys. Rev. Lett. 105, 167401 (2010).

    Article  ADS  Google Scholar 

  36. Greenland, P. T. et al. Coherent control of Rydberg states in silicon. Nature 465, 1057–1061 (2010).

    Article  ADS  Google Scholar 

  37. Luo, C. W. et al. Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation. Phys. Rev. Lett. 92, 047402 (2004).

    Article  ADS  Google Scholar 

  38. Tomaino, J. L. et al. Terahertz excitation of a coherent Λ-type three-level system of exciton-polariton modes in a quantum-well microcavity. Phys. Rev. Lett. 108, 267402 (2012).

    Article  ADS  Google Scholar 

  39. Junginger, F. et al. Nonperturbative interband response of a bulk InSb semiconductor driven off resonantly by terahertz electromagnetic few-cycle pulses. Phys. Rev. Lett. 109, 147403 (2012).

    Article  ADS  Google Scholar 

  40. Matsunaga, R. & Shimano, R. Nonequilibrium BCS state dynamics induced by intense terahertz pulses in a superconducting NbN film. Phys. Rev. Lett. 109, 187002 (2012).

    Article  ADS  Google Scholar 

  41. Beck, M. et al. Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy. Phys. Rev. Lett. 107, 177007 (2011).

    Article  ADS  Google Scholar 

  42. Glossner, A. et al. Cooper pair breakup in YBCO under strong terahertz fields. Preprint at http://lanl.arxiv.org/abs/1205.1684 (2012).

  43. Dienst, A. et al. Optical excitation of Josephson plasma solitons in a cuprate superconductor. Nature Mater. 12, 535–541 (2013).

    Article  ADS  Google Scholar 

  44. Mukai, Y., Hirori, H. & Tanaka, K. Electric field ionization of gallium acceptors in germanium induced by single-cycle terahertz pulses. Phys. Rev. B 87, 201202(R) (2013).

    Article  ADS  Google Scholar 

  45. Ewers, B. et al. Ionization of coherent excitons by strong terahertz fields. Phys. Rev. B 85, 075307 (2012).

    Article  ADS  Google Scholar 

  46. Zaks, B., Liu, R. B. & Sherwin, M. S. Experimental observation of electron–hole recollisions. Nature 483, 580–583 (2012).

    Article  ADS  Google Scholar 

  47. Zaks, B., Banks, H. & Sherwin, M. S. High-order sideband generation in bulk GaAs. Appl. Phys. Lett. 102, 012104 (2013).

    Article  ADS  Google Scholar 

  48. Kuehn, W. et al. Coherent ballistic motion of electrons in a periodic potential. Phys. Rev. Lett. 104, 146602 (2010).

    Article  ADS  Google Scholar 

  49. Blanchard, F. et al. Effective mass anisotropy of hot electrons in nonparabolic conduction bands of n-doped InGaAs films using ultrafast terahertz pump–probe techniques. Phys. Rev. Lett. 107, 107401 (2011).

    Article  ADS  Google Scholar 

  50. Gaal, P. et al. Internal motions of a quasiparticle governing its ultrafast nonlinear response. Nature 450, 1210–1213 (2007).

    Article  ADS  Google Scholar 

  51. Bowlan, P. et al. High-field transport in an electron–hole plasma: transition from ballistic to drift motion. Phys. Rev. Lett. 107, 256602 (2011).

    Article  ADS  Google Scholar 

  52. Su, F. H. et al. Terahertz pulse induced intervalley scattering in photoexcited GaAs. Opt. Express 17, 9620–9629 (2009).

    Article  ADS  Google Scholar 

  53. Razzari, L. et al. Nonlinear ultrafast modulation of the optical absorption of intense few-cycle terahertz pulses in n-doped semiconductors. Phys. Rev. B 79, 193204 (2009).

    Article  ADS  Google Scholar 

  54. Hebling, J., Hoffmann, M. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements. Phys. Rev. B 81, 035201 (2010).

    Article  ADS  Google Scholar 

  55. Ho, I.-C. & Zhang, X.-C. Driving intervalley scattering and impact ionization in InAs with intense terahertz pulses. Appl. Phys. Lett. 98, 241908 (2011).

    Article  ADS  Google Scholar 

  56. Wen, H., Wiczer, M. & Lindenberg, A. M. Ultrafast electron cascades in semiconductors driven by intense femtosecond terahertz pulses. Phys. Rev. B 78, 125203 (2008).

    Article  ADS  Google Scholar 

  57. Hoffmann, M. C., Hebling, J., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Impact ionization in InSb probed by terahertz pump–terahertz probe spectroscopy. Phys. Rev. B 79, 161201(R) (2009).

    Article  ADS  Google Scholar 

  58. Liu, J., Kaur, G. & Zhang, X.-C. Photoluminescence quenching dynamics in cadmium telluride and gallium arsenide induced by ultrashort terahertz pulse. Appl. Phys. Lett. 97, 111103 (2010).

    Article  ADS  Google Scholar 

  59. Hirori, H. et al. Extraordinary carrier multiplication gated by a picosecond electric field pulse. Nat. Commun. 2, 594 (2011).

    Article  ADS  Google Scholar 

  60. Watanabe, S., Minami, N. & Shimano, R. Intense terahertz pulse induced exciton generation in carbon nanotubes. Opt. Express 19, 1528–1538 (2011).

    Article  ADS  Google Scholar 

  61. Tani, S., Blanchard, F. & Tanaka, K. Ultrafast carrier dynamics in graphene under a high electric field. Phys. Rev. Lett. 109, 166603 (2012).

    Article  ADS  Google Scholar 

  62. Huang, S.-W. et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt. Lett. 38, 796–798 (2013).

    Article  ADS  Google Scholar 

  63. Chen, H.-T., O'Hara, J. F., Azad, A. K. & Taylor, A. J. Manipulation of terahertz radiation using metamaterials. Laser Photon. Rev. 5, 513–533 (2011).

    Article  ADS  Google Scholar 

  64. Seo, M. A. et al. Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit. Nature Photon. 3, 152–156 (2009).

    Article  ADS  Google Scholar 

  65. Shalaby, M. et al. Concurrent field enhancement and high transmission of THz radiation in nanoslit arrays. Appl. Phys. Lett. 99, 041110 (2011).

    Article  ADS  Google Scholar 

  66. Werley, C. A. et al. Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements. Opt. Express 20, 8551–8567 (2012).

    Article  ADS  Google Scholar 

  67. Blanchard, F., Doi, A., Tanaka, T. & Tanaka, K. Subwavelength terahertz imaging. Annu. Rev. Mater. Res. 43, 237–259 (2013).

    Article  ADS  Google Scholar 

  68. Giannini, V., Berrier, A., Maier, S. A., Sánchez-Gil, J. A. & Gómez-Rivas, J. Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. Opt. Express 18, 2797–2807 (2010).

    Article  ADS  Google Scholar 

  69. Wimmer, L. et al. Controlling and streaking nanotip photoemission by enhanced single-cycle terahertz pulses. Preprint at http://lanl.arxiv.org/abs/1307.2581 (2013).

  70. Burresi, M. et al. Magnetic light–matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett. 105, 123901 (2010).

    Article  ADS  Google Scholar 

  71. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  ADS  Google Scholar 

  72. Shen, Y. et al. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses. Phys. Rev. Lett. 99, 043901 (2007).

    Article  ADS  Google Scholar 

  73. Novelli, F., Fausti, D., Giusti, F., Parmigiani, F. & Hoffmann, M. Mixed regime of light-matter interaction revealed by phase sensitive measurements of the dynamical Franz-Keldysh effect. Sci. Rep. 3, 1227 (2013).

    Article  ADS  Google Scholar 

  74. Shen, Y. et al. Electro-optic time lensing with an intense single-cycle terahertz pulse. Phys. Rev. A 81, 053835 (2010).

    Article  ADS  Google Scholar 

  75. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  76. Beggs, D. M., Krauss, T. F., Kuipers, L. & Kampfrath, T. Ultrafast tilting of the dispersion of a photonic crystal and adiabatic spectral compression of light pulses. Phys. Rev. Lett. 108, 033902 (2012).

    Article  ADS  Google Scholar 

  77. Schubert, O. et al. Ultrashort pulse characterization with a terahertz streak camera. Opt. Lett. 36, 4458–4460 (2011).

    Article  ADS  Google Scholar 

  78. Hoffmann, M. C., Brandt, N. C., Hwang, H. Y., Yeh, K.-L. & Nelson, K. A. Terahertz Kerr effect. Appl. Phys. Lett. 95, 231105 (2009).

    Article  ADS  Google Scholar 

  79. Turchinovich, D., Hvam, J. M. & Hoffmann, M. C. Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor. Phys. Rev. B 85, 201304(R) (2012).

    Article  ADS  Google Scholar 

  80. Zhang, C. et al. Terahertz nonlinear superconducting metamaterials. Appl. Phys. Lett. 102, 081121 (2013).

    Article  ADS  Google Scholar 

  81. Fan, K. et al. Nonlinear terahertz metamaterials via field-enhanced carrier dynamics in GaAs. Phys. Rev. Lett. 110, 217404 (2013).

    Article  ADS  Google Scholar 

  82. Jewariya, M., Nagai, M. & Tanaka, K. Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse. Phys. Rev. Lett. 105, 203003 (2010).

    Article  ADS  Google Scholar 

  83. Eickemeyer, F., Kaindl, R. A., Woerner, M., Elsaesser, T. & Weiner, A. M. Controlled shaping of ultrafast electric field transients in the mid-infrared spectral range. Opt. Lett. 25, 1472–1474 (2000).

    Article  ADS  Google Scholar 

  84. Ahn, J., Efimov, A., Averitt, R. & Taylor, A. Terahertz waveform synthesis via optical rectification of shaped ultrafast laser pulses. Opt. Express 11, 2486–2496 (2003).

    Article  ADS  Google Scholar 

  85. Chen, Z., Zhou, X., Werley, C. A. & Nelson, K. A. Generation of high power tunable multicycle terahertz pulses. Appl. Phys. Lett. 99, 071102 (2011).

    Article  ADS  Google Scholar 

  86. Feurer, T., Vaughan, J. C. & Nelson, K. A. Spatiotemporal coherent control of lattice vibrational waves. Science 299, 374–377 (2003).

    Article  ADS  Google Scholar 

  87. Feurer, T. et al. Terahertz polaritonics. Annu. Rev. Mater. Res. 37, 317–350 (2007).

    Article  ADS  Google Scholar 

  88. Knippels, G. M. H., Mols, R. F. X. A. M., van der Meer, A. F. G., Oepts, D. & van Amersfoort, P. W. Intense far-infrared free-electron laser pulses with a length of six optical cycles. Phys. Rev. Lett. 75, 1755–1758 (1995).

    Article  ADS  Google Scholar 

  89. Zvyagin, S. A. et al. Terahertz-range free-electron laser electron spin resonance spectroscopy: techniques and applications in high magnetic fields. Rev. Sci. Instrum. 80, 073102 (2009).

    Article  ADS  Google Scholar 

  90. Först, M et al. in Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E., Zeitler, A. & Kuwata-Gonokami, M.) Ch. 23 (Springer Series in Optical Sciences 171, Springer, 2013).

    Google Scholar 

  91. Gensch, M. et al. New infrared undulator beamline at FLASH. Infrared Phys. Technol. 51, 423–425 (2008).

    Article  ADS  Google Scholar 

  92. Elias, L. R., Hu, J. & Ramian, G. The UCSB electrostatic accelerator free electron laser: first operation. Nucl. Instrum. Meth. Phys. Res. A 237, 203–206 (1985).

    Article  ADS  Google Scholar 

  93. Hoffmann, M. C. et al. Coherent single-cycle pulses with MV/cm field strengths from a relativistic transition radiation light source. Opt. Lett. 36, 4473–4475 (2011).

    Article  ADS  Google Scholar 

  94. Wu, Z. et al. Intense terahertz pulses from SLAC electron beams using coherent transition radiation. Rev. Sci. Instrum. 84, 022701 (2013).

    Article  ADS  Google Scholar 

  95. Reimann, K. Table-top sources of ultrashort THz pulses. Rep. Prog. Phys. 70, 1597 (2007).

    Article  ADS  Google Scholar 

  96. Kitaeva, G. Kh. Terahertz generation by means of optical lasers. Laser Phys. Lett. 5, 559–576 (2008).

    Article  ADS  Google Scholar 

  97. Hebling, J., Yeh, K.-L., Hoffmann, M. C., Bartal, B. & Nelson, K. A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. J. Opt. Soc. Am. B 25, 6–19 (2008).

    Article  Google Scholar 

  98. Fülöp, J. A. et al. Generation of sub-mJ terahertz pulses by optical rectification. Opt. Lett. 37, 557–559 (2012).

    Article  ADS  Google Scholar 

  99. Blanchard, F. et al. Generation of 1.5 μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal. Opt. Express 15, 13212–13220 (2007).

    Article  ADS  Google Scholar 

  100. Hauri, C. P., Ruchert, C., Vicario, C. & Ardana, F. Strong-field single-cycle THz pulses generated in an organic crystal. Appl. Phys. Lett. 99, 161116 (2011).

    Article  ADS  Google Scholar 

  101. Ruchert, C., Vicario, C. & Hauri, C. P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1. Opt. Lett. 37, 899–901 (2012).

    Article  ADS  Google Scholar 

  102. Reimann, K., Smith, R. P., Weiner, A. M., Elsaesser, T. & Woerner, M. Direct field-resolved detection of terahertz transients with amplitudes of megavolts per centimeter. Opt. Lett. 28, 471–473 (2003).

    Article  ADS  Google Scholar 

  103. Sell, A., Leitenstorfer, A. & Huber, R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Opt. Lett. 33, 2767–2769 (2008).

    Article  ADS  Google Scholar 

  104. You, D., Jones, R. R., Bucksbaum, P. H. & Dykaar, D. R. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses. Opt. Lett. 18, 290–292 (1993).

    Article  ADS  Google Scholar 

  105. Kim, K.-Y., Glownia, J. H., Taylor, A. J. & Rodriguez, G. High-power broadband terahertz generation via two-color photoionization in gases. IEEE J. Quantum Electron. 48, 797–805 (2012).

    Article  ADS  Google Scholar 

  106. Wu, Q. & Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995).

    Article  ADS  Google Scholar 

  107. Leitenstorfer, A., Hunsche, S., Shah, J., Nuss, M. C. & Knox, W. H. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Appl. Phys. Lett. 74, 1516–1518 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.K. acknowledges support from the DFG grant KA 3305/2-1 and thanks G. Kampfrath, L. Braun, R. K. Campen, M. Gensch, R. Huber, A. Leitenstorfer, S. Mährlein and M. Wolf for support and discussions. K.T. acknowledges support by KAKENHI (no. 23244065 and no. 20104007) from JSPS and MEXT of Japan and thanks M. Nagai, H. Hirori, F. Blanchard, S. Tani, A. Doi and T. Tanaka for collaborations and discussions. K.A.N. acknowledges support from Office of Naval Research grants N00014-09-1-1103 and N00014-06-1-0463.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tobias Kampfrath, Koichiro Tanaka or Keith A. Nelson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kampfrath, T., Tanaka, K. & Nelson, K. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photon 7, 680–690 (2013). https://doi.org/10.1038/nphoton.2013.184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing