Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics

Abstract

The conversion of solar radiation into electric current with high efficiency is one of the most important topics of modern scientific research, as it holds great potential as a source of clean and renewable energy. Exploitation of interaction between nanocrystals seems to be a promising route to the establishment of third-generation photovoltaics. Here, we adopt a fully ab initio scheme to estimate the role of nanoparticle interplay in the carrier multiplication dynamics of interacting silicon nanocrystals. Energy and charge transfer-based carrier multiplication events are studied as a function of nanocrystal separation, demonstrating the benefits induced by the wavefunction sharing regime. We prove the relevance of these recombinative mechanisms for photovoltaic applications in the case of silicon nanocrystals arranged in dense arrays, quantifying at an atomic scale which conditions maximize the outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carrier multiplication lifetimes in non-interacting Si-NCs and Si bulk.
Figure 2: One- and two-site carrier multiplication.
Figure 3: Carrier multiplication lifetimes in interacting Si-NCs.
Figure 4: SSQC and CDCT lifetimes.
Figure 5: Role of wavefunction delocalization.
Figure 6: Wavefunction sharing regime.

Similar content being viewed by others

References

  1. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  ADS  Google Scholar 

  2. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  ADS  Google Scholar 

  3. Trinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

    Article  ADS  Google Scholar 

  4. Nair, G., Geyer, S. M., Chang, L.-Y. & Bawendi, M. G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78, 125325 (2008).

    Article  ADS  Google Scholar 

  5. Schaller, R. D., Sykora, M., Pietryga, J. M. & Klimov, V. I. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett. 6, 424–429 (2006).

    Article  ADS  Google Scholar 

  6. Semonin, O. E. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    Article  ADS  Google Scholar 

  7. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Effect of electronic structure on carrier multiplication efficiency: comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 87, 253102 (2005).

    Article  ADS  Google Scholar 

  8. Schaller, R. D., Sykora, M., Jeong, S. & Klimov, V. I. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110, 25332–24338 (2006).

    Article  Google Scholar 

  9. Gachet, D., Avidan, A., Pinkas, I. & Oron, D. An upper bound to carrier multiplication efficiency in type II colloidal quantum dots. Nano Lett. 10, 164–170 (2010).

    Article  ADS  Google Scholar 

  10. Murphy, J. E. et al. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  Google Scholar 

  11. Schaller, R. D., Pietryga, J. M. & Klimov, V. I. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 7, 3469–3476 (2007).

    Article  ADS  Google Scholar 

  12. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  ADS  Google Scholar 

  13. Pijpers, J. J. H. et al. Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. J. Phys. Chem. C 111, 4146–4152 (2007).

    Article  Google Scholar 

  14. Ben-Lulu, M., Mocatta, D., Bonn, M., Banin, U. & Ruhman, S. On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe Core/Shell1/Shell2 quantum dots. Nano Lett. 8, 1207–1211 (2008).

    Article  ADS  Google Scholar 

  15. McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D. & Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008).

    Article  Google Scholar 

  16. Ji, M. et al. Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Lett. 9, 1217–1222 (2009).

    Article  ADS  Google Scholar 

  17. Nair, G. & Bawendi, M. G. Carrier multiplication yields of CdSe and CdSe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 76, 081304 (2007).

    Article  ADS  Google Scholar 

  18. Delerue, C., Allan, G., Pijpers, J. J. H. & Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: mechanism, efficiency, and interest for solar cells. Phys. Rev. B 81, 125306 (2010).

    Article  ADS  Google Scholar 

  19. McGuire, J. A., Sykora, M., Joo, J., Pietryga, J. M. & Klimov, V. I. Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10, 2049–2057 (2010).

    Article  ADS  Google Scholar 

  20. Nair, G., Chang, L. Y., Geyer, S. M. & Bawendi, M. G. Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 11, 2145–2151 (2011).

    Article  ADS  Google Scholar 

  21. Timmerman, D., Izeddin, I. & Gregorkiewicz, T. Saturation of luminescence from Si nanocrystals embedded in SiO2 . Phys. Status Solidi A 207, 183–187 (2010).

    Article  ADS  Google Scholar 

  22. Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

    Article  ADS  Google Scholar 

  23. Timmerman, D., Valenta, J., Dohnalova, K., de Boer, W. D. A. M. & Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nature Nanotech. 6, 710–713 (2011).

    Article  ADS  Google Scholar 

  24. Trinh, M. T. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nature Photon. 6, 316–321 (2012).

    Article  ADS  Google Scholar 

  25. Califano, M., Zunger, A. & Franceschetti, A. Efficient inverse Auger recombination at threshold in CdSe nanocrystals. Nano Lett. 4, 525–531 (2004).

    Article  ADS  Google Scholar 

  26. Allan, G. & Delerue, C. Role of impact ionization in multiple exciton generation in PbSe nanocrystals. Phys. Rev. B 73, 205423 (2006).

    Article  ADS  Google Scholar 

  27. Franceschetti, A., An, J. M. & Zunger, A. Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Lett. 6, 2191–2195 (2006).

    Article  ADS  Google Scholar 

  28. Allan, G. & Delerue, C. Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: role of defects. Phys. Rev. B 79, 195324 (2009).

    Article  ADS  Google Scholar 

  29. Rabani, E. & Baer, R. Distribution of multiexciton generation rates in CdSe and InAs nanocrystals. Nano Lett. 8, 4488–4492 (2008).

    Article  ADS  Google Scholar 

  30. Shabaev, A., Efros, A. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  ADS  Google Scholar 

  31. Schaller, R. D., Agranovich, V. M. & Klimov, V. I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys. 1, 189–194 (2005).

    Article  ADS  Google Scholar 

  32. Rabani, E. & Baer, R. Theory of multiexciton generation in semiconductor nanocrystals. Chem. Phys. Lett. 496, 227–235 (2010).

    Article  ADS  Google Scholar 

  33. Govoni, M., Marri, I. & Ossicini, S. Auger recombination in Si and GaAs semiconductors: ab initio results. Phys. Rev. B 84, 075215 (2011).

    Article  ADS  Google Scholar 

  34. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  ADS  Google Scholar 

  35. Navarro-Urrios, D. et al. Energy transfer between amorphous Si nanoclusters and Er3+ ions in a SiO2 matrix. Phys. Rev. B 79, 193312 (2009).

    Article  ADS  Google Scholar 

  36. Pitanti, A. et al. Energy transfer mechanism and Auger effect in Er3+ coupled silicon nanoparticle samples. J. Appl. Phys. 108, 053518 (2010).

    Article  ADS  Google Scholar 

  37. Gali, A., Voros, M., Rocca, D., Zimanyi, G. T. & Galli, G. High-energy excitations in silicon nanoparticles. Nano Lett. 9, 3780–3785 (2009).

    Article  ADS  Google Scholar 

  38. Aerts, M. et al. Free charges produced by carrier multiplication in strongly coupled PbSe quantum dot films. Nano Lett. 11, 4485–4489 (2011).

    Article  ADS  Google Scholar 

  39. Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  40. Marini, A., Hogan, C., Grüning, M. & Varsano, D. Yambo: an ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).

    Article  ADS  Google Scholar 

  41. Humphrey, W., Dalke, A. & Schulten, K. VMD – Visual Molecular Dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Super-Computing Interuniversity Consortium CINECA for support and high-performance computing resources under the Italian Super-Computing Resource Allocation (ISCRA) initiative, and the European Community's Seventh Framework Programme (FP7/2007-2013; grant agreement 245977). The authors thank G. Cantele and F. Iori for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.G., I.M and S.O. conceived the project. M.G. and I.M. designed and performed simulations with a code developed by M.G., and co-wrote the manuscript. I.M. and S.O. supervised the project. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Marco Govoni or Ivan Marri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 408 kb)

Supplementary Movie

Supplementary Movie (MOV 3789 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govoni, M., Marri, I. & Ossicini, S. Carrier multiplication between interacting nanocrystals for fostering silicon-based photovoltaics. Nature Photon 6, 672–679 (2012). https://doi.org/10.1038/nphoton.2012.206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing