Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Understanding intermediate-band solar cells

Abstract

The intermediate-band solar cell is designed to provide a large photogenerated current while maintaining a high output voltage. To make this possible, these cells incorporate an energy band that is partially filled with electrons within the forbidden bandgap of a semiconductor. Photons with insufficient energy to pump electrons from the valence band to the conduction band can use this intermediate band as a stepping stone to generate an electron–hole pair. Nanostructured materials and certain alloys have been employed in the practical implementation of intermediate-band solar cells, although challenges still remain for realizing practical devices. Here we offer our present understanding of intermediate-band solar cells, as well as a review of the different approaches pursed for their practical implementation. We also discuss how best to resolve the remaining technical issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theory of the IB solar cell and basic results.
Figure 2: Energy levels and wavefunctions of a QD whose shape is assumed to be a three-dimensional parallelepiped.
Figure 3: Open-circuit voltage (VOC) of a QD IB solar cell as a function of photogenerated current density (IL) at a range of temperatures.
Figure 4: Results related to the implementation of IB solar cells based on bulk approaches.

Similar content being viewed by others

References

  1. Luque, A. & Martí, A. A metallic intermediate band high efficiency solar cell. Prog. Photovolt. Res. Appl. 9, 73–86 (2001).

    Article  Google Scholar 

  2. Luque, A. & Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).

    Article  ADS  Google Scholar 

  3. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  4. Green, A. M. Multiple band and impurity photovoltaic solar cells: General theory and comparison to tandem cells. Prog. Photovolt. Res. Appl. 9, 137–144 (2001).

    Article  Google Scholar 

  5. Wolf, M. Limitations and possibilities for improvements of photovoltaic solar energy converters. Part I: Considerations for earth's surface operation. Proc. IRE 48, 1246–1263 (1960).

    Article  Google Scholar 

  6. Ekins-Daukes, N. J., Honsberg, C. B. & Yamaguchi, M. Signature of intermediate band materials from luminescence measurements in Proc. 31st IEEE Photovoltaic Specialists Conf. 49–54 (IEEE, 2005).

    Google Scholar 

  7. Levy, M. Y. & Honsberg, C. Solar cell with an intermediate band of finite width. Phys. Rev. B 78, 165122 (2008).

    Article  ADS  Google Scholar 

  8. Strandberg, R. & Reenaas, T. W. Photofilling of intermediate bands. J. Appl. Phys. 105, 124512 (2009).

    Article  ADS  Google Scholar 

  9. Martí, A., Cuadra, L. & Luque, A. Quantum dot intermediate band solar cell in Proc. 28th IEEE Photovoltaics Specialists Conf. 904–943 (IEEE, 2000).

    Google Scholar 

  10. Luque, A. et al. General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence. J. Appl. Phys. 96, 903–909 (2004).

    Article  ADS  Google Scholar 

  11. Marti, A. et al. Elements of the design and analysis band solar of quantum-dot intermediate cells. Thin Solid Films 516, 6716–6722 (2008).

    Article  ADS  Google Scholar 

  12. Hubbard, S. M. et al. Effect of strain compensation on quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 92, 123512 (2008).

    Article  ADS  Google Scholar 

  13. Oshima, R., Takata, A. & Okada, Y. Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells. Appl. Phys. Lett. 93, 083111 (2008).

    Article  ADS  Google Scholar 

  14. Kechiantz, A. M., Sun, K. W., Kechiyants, H. M. & Kocharyan, L. M. Self-ordered Ge/Si quantum dot intermediate band photovoltaic solar cells. Int. Sci. J. Alt. Energ. Ecol. 12, 85–87 (2005).

    Google Scholar 

  15. Laghumavarapu, R. B. et al. Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91, 243115 (2007).

    Article  ADS  Google Scholar 

  16. Zhou, D., Sharma, G., Thomassen, S. F., Reenaas, T. W. & Fimland, B. O. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 96, 061913 (2010).

    Article  ADS  Google Scholar 

  17. Blokhin, S. A. et al. AlGaAs/GaAs Photovoltaic cells with an array of InGaAs QDs. Semiconductors 43, 514–518 (2009).

    Article  ADS  Google Scholar 

  18. Bailey, C. G., Forbes, D. V., Raffaelle, R. P. & Hubbard, S. M. Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Appl. Phys. Lett. 98, 163105 (2011).

    Article  ADS  Google Scholar 

  19. Guimard, D. et al. Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage. Appl. Phys. Lett. 96, 203507 (2010).

    Article  ADS  Google Scholar 

  20. Popescu, V., Bester, G., Hanna, M. C., Norman, A. G. & Zunger, A. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells. Phys. Rev. B 78, 205321 (2008).

    Article  ADS  Google Scholar 

  21. Akahane, K. et al. Highly packed InGaAs quantum dots on GaAs(311)B. Appl. Phys. Lett. 73, 3411–3413 (1998).

    Article  ADS  Google Scholar 

  22. Datta, S. Quantum Phenomena Ch. 6 (Addison Wesley, 1989).

    Google Scholar 

  23. Luque, A., Marti, A., Antolin, E. & Garcia-Linares, P. Intraband absorption for normal illumination in quantum dot intermediate band solar cells. Sol. Energ. Mater. Sol. C. 94, 2032–2035 (2010).

    Article  Google Scholar 

  24. Luque, A. et al. Radiative thermal escape in intermediate band solar cells. AIP Advances 1, 022125 (2011).

    Article  ADS  Google Scholar 

  25. Luque, A. et al. New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells. Sol. Energ. Mater. Sol. C. 95, 2095–2101 (2011).

    Article  Google Scholar 

  26. Tomic, S., Jones, T. S. & Harrison, N. M. Absorption characteristics of a quantum dot array induced intermediate band: Implications for solar cell design. Appl. Phys. Lett. 93, 263105 (2008).

    Article  ADS  Google Scholar 

  27. Antolín, E. et al. Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell. J. Appl. Phys. 108, 064513 (2010).

    Article  ADS  Google Scholar 

  28. Linares, P. G. et al. Voltage recovery in intermediate band solar cells. Sol. Energ. Mater. Sol. C. 98, 240–244 (2012).

    Article  Google Scholar 

  29. Shockley, W. & Read, W. T. Statistics of the recombination of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  ADS  Google Scholar 

  30. Hall, R. N. Electron–hole recombination in germanium. Phys. Rev. 87, 387 (1952).

    Article  ADS  Google Scholar 

  31. Wahnón, P. & Tablero, C. Ab initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials. Phys. Rev. B 65, 155115 (2002).

    Article  Google Scholar 

  32. Palacios, P., Wahnón, P., Pizzinato, S. & Conesa, J. C. Energetics of formation of TiGa3As4 and TiGa3P4 intermediate band materials. J. Chem. Phys. 124, 14711–14715 (2006).

    Article  ADS  Google Scholar 

  33. Palacios, P., Aguilera, I., Sanchez, K., Conesa, J. C. & Wahnon, P. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: Prediction and understanding of their electronic properties. Phys. Rev. Lett. 101, 046403 (2008).

    Article  ADS  Google Scholar 

  34. Sanchez, K., Aguilera, I., Palacios, P. & Wahnon, P. Assessment through first-principles calculations of an intermediate-band photovoltaic material based on Ti-implanted silicon: Interstitial versus substitutional origin. Phys. Rev. B 79, 165203 (2009).

    Article  ADS  Google Scholar 

  35. Yu, K. M. et al. Diluted II–VI oxide semiconductors with multiple band gaps. Phys. Rev. Lett. 91, 246403–246404 (2003).

    Article  ADS  Google Scholar 

  36. Walukiewicz, W. et al. Interaction of localized electronic states with the conduction band: Band anticrossing in II–VI semiconductor ternaries. Phys. Rev. Lett. 85, 1552–1555 (2000).

    Article  ADS  Google Scholar 

  37. Yu, K. M. et al. Multiband GaNAsP quaternary alloys. Appl. Phys. Lett. 88, 092110–092113 (2006).

    Article  ADS  Google Scholar 

  38. Lucena, R., Aguilera, I., Palacios, P., Wahnon, P. & Conesa, J. C. Synthesis and spectral properties of nanocrystalline V-Substituted In2S3: A novel material for more efficient use of solar radiation. Chem. Mater. 20, 5125–5127 (2008).

    Article  Google Scholar 

  39. Gonzalez-Diaz, G. et al. Intermediate band mobility in heavily titanium-doped silicon layers. Sol. Energ. Mater. Sol. C. 93, 1668–1673 (2009).

    Article  Google Scholar 

  40. Lang, D. V. & Henry, C. H. Nonradiative recombination at deep levels in GaAs and GaP by lattice-relaxation multiphonon emission. Phys. Rev. Lett. 35, 1525–1528 (1975).

    Article  ADS  Google Scholar 

  41. Markvart, T. Multiphonon recombination in Recombination in semiconductors (ed. Landsberg, P. T.) 450 (Cambridge University Press, 1991).

    Google Scholar 

  42. Luque, A., Martí, A., Antolín, E. & Tablero, C. Intermediate bands versus levels in non-radiative recombination. Physica B 382, 320–327 (2006).

    Article  ADS  Google Scholar 

  43. Mott, N. F. Metal–insulator transition. Rev. Mod. Phys. 40, 677–683 (1968).

    Article  ADS  Google Scholar 

  44. Antolin, E. et al. Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material. Appl. Phys. Lett. 94, 042115 (2009).

    Article  ADS  Google Scholar 

  45. Wang, W., Lin, A. S. & Phillips, J. D. Intermediate-band photovoltaic solar cell based on ZnTe:O. Appl. Phys. Lett. 95, 011103 (2009).

    Article  ADS  Google Scholar 

  46. Wang, W., Lin, A. S., Phillips, J. D. & Metzger, W. K. Generation and recombination rates at ZnTe:O intermediate band states. Appl. Phys. Lett. 95, 261107 (2009).

    Article  ADS  Google Scholar 

  47. Lopez, N., Reichertz, L. A., Yu, K. M., Campman, K. & Walukiewic, W. Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011).

    Article  ADS  Google Scholar 

  48. Luque, A. & Marti, A. Photovoltaics: Towards the intermediate band. Nature Photon. 5, 137–138 (2011).

    Article  ADS  Google Scholar 

  49. Antolín, E., Martí, A. & Luque, A. The lead salt quantum dot intermediate band solar cell in Proc. 37th Photovoltaic Specialists Conf. (IEEE, 2011).

    Google Scholar 

  50. Heiss, W. et al. Quantum dot with coherent interfaces between rocksalt-PbTe and zincblende-CdTe. J. Appl. Phys. 101, 081723 (2007).

    Article  ADS  Google Scholar 

  51. Harrison, P. Quantum Wells, Wires and Dots 333 (Wiley, 2005).

    Book  Google Scholar 

  52. Barreau, N. et al. Study of a new indium sulphide derivative for buffer layer application in Proc. 29th IEEE Photovoltaic Specialists Conf. 628–631 (IEEE, 2002).

    Google Scholar 

  53. Martí, A. et al. Emitter degradation in quantum dot intermediate band solar cells. Appl. Phys. Lett. 90, 233510 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Luque.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luque, A., Martí, A. & Stanley, C. Understanding intermediate-band solar cells. Nature Photon 6, 146–152 (2012). https://doi.org/10.1038/nphoton.2012.1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing