Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The nanotechnology of life-inspired systems

Abstract

For some decades now, nanotechnology has been touted as the 'next big thing' with potential impact comparable to the steam, electricity or Internet revolutions — but has it lived up to these expectations? While advances in top-down nanolithography, now reaching 10-nm resolution, have resulted in devices that are rapidly approaching mass production, attempts to produce nanoscale devices using bottom-up approaches have met with only limited success. We have been inundated with nanoparticles of almost any shape, material and composition, but their societal impact has been far from revolutionary, with growing concerns over their toxicity. Despite nebulous hopes that making hierarchical nanomaterials will lead to new, emergent properties, no breakthrough applications seem imminent. In this Perspective, we argue that the time is ripe to look beyond individual nano-objects and their static assemblies, and instead focus on systems comprising different types of 'nanoparts' interacting and/or communicating with one another to perform desired functions. Such systems are interesting for a variety of reasons: they can act autonomously without external electrical or optical connections, can be dynamic and reconfigurable, and can act as 'nanomachines' by directing the flow of mass, energy or information . In thinking how this systems nanoscience approach could be implemented to design useful — as opposed to toy-model — nanosystems, our choice of applications and our nanoengineering should be inspired by living matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure, function and external control of complex biological nanosystems.
Figure 2: Artificial nanosystems with built-in feedback.
Figure 3: Wet-stamped reaction–diffusion microsystems.
Figure 4: Communication between nanosystems.
Figure 5: Nanoparts for existing and hypothetical nanosystems.
Figure 6: Visualizing systems by 'etch-a-system'.

Similar content being viewed by others

References

  1. Lutkenhaus, J. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76, 539–562 (2007).

    Article  CAS  Google Scholar 

  2. Soh, S., Byrska, M., Kandere-Grzybowska, K. & Grzybowski, B. A. Reaction–diffusion systems in intracellular molecular transport and control. Angew. Chem. Int. Ed. 49, 4170–4198 (2010).

    Article  CAS  Google Scholar 

  3. Funke, J. J. & Dietz, H. Placing molecules with Bohr radius resolution using DNA origami. Nature Nanotech. 11, 47–52 (2016).

    Article  CAS  Google Scholar 

  4. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article  CAS  Google Scholar 

  5. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  Google Scholar 

  6. Fialkowski, M. et al. Principles and implementations of dissipative (dynamic) self-assembly. J. Phys. Chem. B 110, 2482–2496 (2006).

    Article  CAS  Google Scholar 

  7. Ley, S. V. et al. Machine-assisted organic synthesis. Angew. Chem. Int. Ed. 54, 10122–10136 (2105).

    Article  Google Scholar 

  8. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    Article  CAS  Google Scholar 

  9. Ragazzon, G. et al. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    Article  CAS  Google Scholar 

  10. Boekhoven, J. et al. Transient assembly of active materials fuelled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  11. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004).

    Article  CAS  Google Scholar 

  12. Paxton, W. F., Sundararajan, S., Mallouk, T. E. & Sen, A. Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420–5429 (2006).

    Article  CAS  Google Scholar 

  13. Soto, R. & Golestanian, R. Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112, 068301 (2014).

    Article  Google Scholar 

  14. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article  CAS  Google Scholar 

  15. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    Article  CAS  Google Scholar 

  16. Yi, T. M., Huang, Y., Simon, M. I. & Doyle, J. Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl Acad. Sci. USA 97, 4649–4653 (2000).

    Article  CAS  Google Scholar 

  17. Giuseppone, N. Toward self-constructing materials: a systems chemistry approach. Acc. Chem. Res. 45, 2178–2188 (2012).

    Article  CAS  Google Scholar 

  18. Semenov, S. Y. et al. Rational design of functional and tunable oscillating enzymatic networks. Nature Chem. 7, 160–165 (2015).

    Article  CAS  Google Scholar 

  19. Epstein, I. & Pojman, J. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford Univ. Press, 1998).

    Google Scholar 

  20. Lagzi, I., Kowalczyk, B., Wang, D. W. & Grzybowski, B. A. Nanoparticle oscillations and fronts. Angew. Chem. Int. Ed. 49, 8616–8619 (2010).

    Article  CAS  Google Scholar 

  21. Nowak, P., Colomb-Delsue, M., Otto, S. & Li, J. W. Template-triggered emergence of a self-replicator from a dynamic combinatorial library. J. Am. Chem. Soc. 137, 10965–10969 (2015).

    Article  CAS  Google Scholar 

  22. Mattia, E. & Otto, S. Supramolecular systems chemistry. Nature Nanotech. 10, 111–119 (2015).

    Article  CAS  Google Scholar 

  23. He, X. M. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012).

    Article  CAS  Google Scholar 

  24. Grzybowski, B. A. et al. Micro- and nanotechnology via reaction–diffusion. Soft Matter 1, 114–128 (2005).

    Article  CAS  Google Scholar 

  25. Bishop, K. J. M. & Grzybowski, B. A. Localized chemical wave emission and mode switching in a patterned excitable medium. Phys. Rev. Lett. 97, 128702 (2006).

    Article  CAS  Google Scholar 

  26. Semenov, S. N., Markvoort, A. J., deGreef, T. F. A. & Huck, W. T. S. Threshold sensing through a synthetic enzymatic reaction–diffusion network. Angew. Chem. Int. Ed. 53, 8066–8069 (2014).

    Article  CAS  Google Scholar 

  27. Semenov, S. N. et al. Ultrasensitivity by molecular titration in spatially propagating enzymatic reactions. Biophys. J. 105, 1057–1066 (2013).

    Article  CAS  Google Scholar 

  28. Epstein, I. R. Coupled chemical oscillators and emergent system properties. Chem. Commun. 50, 10758–10767 (2014).

    Article  CAS  Google Scholar 

  29. Vanag, V. K. & Epstein, I. R. Segmented spiral waves in a reaction–diffusion system. Proc. Natl Acad. Sci. USA 100, 14635–14638 (2003).

    Article  CAS  Google Scholar 

  30. Gimenez, C. et al. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 53, 12629–12633 (2014).

    CAS  Google Scholar 

  31. Steinberg-Yfrach, G. et al. Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane. Nature 392, 479–482 (1998).

    Article  CAS  Google Scholar 

  32. Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev. 39, 2203–2237 (2010).

    Article  CAS  Google Scholar 

  33. Kim, Y., Macfarlane, R. J., Jones, M. R. & Mirkin, C. A. Transmutable nanoparticles with reconfigurable surface ligands. Science 351, 579–582 (2016).

    Article  CAS  Google Scholar 

  34. Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    Article  CAS  Google Scholar 

  35. Pillai, P., Kowalczyk, B. & Grzybowski, B. A. Controlled pH stability and adjustable cellular uptake of mixed-charge nanoparticles. J. Am. Chem. Soc. 135, 6392–6395 (2013).

    Article  CAS  Google Scholar 

  36. Walker, D. A., Leitsch, E. K., Nap, R., Szleifer, I. & Grzybowski, B. A. Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nature Nanotech. 8, 676–681 (2013).

    Article  CAS  Google Scholar 

  37. Tonga, G. Y. et al. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nature Chem. 7, 597–603 (2015).

    Article  CAS  Google Scholar 

  38. Orelle, C. et al. Protein synthesis by ribosomes with tethered subunits. Nature 524, 119–124 (2015).

    Article  CAS  Google Scholar 

  39. Wei, Y., Han, S., Kim, J., Soh, S. & Grzybowski, B. A. Photoswitchable catalysis mediated by dynamic aggregation of nanoparticles. J. Am. Chem. Soc. 132, 11018–11020 (2010).

    Article  CAS  Google Scholar 

  40. Stano, P. & Luisi, P. L. Semi-synthetic minimal cells: origin and recent developments. Curr. Opin. Biotechnol. 24, 633–638 (2013).

    Article  CAS  Google Scholar 

  41. Blain, J. C. & Szostak, J. W. Progress toward synthetic cells. Annu. Rev. Biochem. 83, 615–640 (2014).

    Article  CAS  Google Scholar 

  42. Fallah-Araghi, A. Enhanced chemical synthesis at soft interfaces: a universal reaction–adsorption mechanism in microcompartments. Phys. Rev. Lett. 112, 028301 (2014).

    Article  Google Scholar 

  43. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chem. 6, 295–302 (2014).

    Article  CAS  Google Scholar 

  44. Wu, F., van Schie, B. G. C., Keymer, J. E. & Dekker, C. Symmetry and scale orient Min protein patterns in shaped bacterial sculptures. Nature Nanotech. 10, 719–726 (2015).

    Article  CAS  Google Scholar 

  45. Astumian, R. D. & Hänggi, P. Brownian motors. Phys. Today 55, 33–39 (November, 2002).

    Article  Google Scholar 

  46. Zhang, R., Walker, D. A., Grzybowski, B. A. & de la Cruz, M. O. Accelerated self-replication under non-equilibrium, periodic energy delivery. Angew. Chem. Int. Ed. 53, 173–177 (2014).

    Article  CAS  Google Scholar 

  47. Cheng, X., Merchan, L., Tchernookov, M. & Nemenman, I. A large number of receptors may reduce cellular response time variation. Phys. Biol. 10, 035008 (2013).

    Article  Google Scholar 

  48. McKeithan, T. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl Acad. Sci. USA 92, 5042–5046 (1995).

    Article  CAS  Google Scholar 

  49. Jeong, J. W. et al. Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Health. Mater. 3, 642–648 (2014).

    Article  CAS  Google Scholar 

  50. Jeong, J. W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.A.G. acknowledges the support of the Institute for Basic Science Korea, Project Code IBS-R020-D1. W.T.S.H. acknowledges support from the Ministry of Education, Culture and Science (Gravitation programme 024.001.035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bartosz A. Grzybowski or Wilhelm T. S. Huck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzybowski, B., Huck, W. The nanotechnology of life-inspired systems. Nature Nanotech 11, 585–592 (2016). https://doi.org/10.1038/nnano.2016.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2016.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing