Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanowire liquid pumps

Abstract

The ability to form tiny droplets of liquids1,2,3,4,5,6 and control their movements7,8,9,10 is important in printing or patterning1,2, chemical reactions10,11,12 and biological assays9,10,13,14. So far, such nanofluidic15,16 capabilities have principally used components such as channels9,10, nozzles1,6 or tubes17,18,19,20,21,22, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of 10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh–Plateau instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ionic liquid beads and flat precursor film.
Figure 2: Modelling and simulations.
Figure 3: Transport and patterning of liquids by nanowire.
Figure 4: Nanowire network nanofluidics.

Similar content being viewed by others

References

  1. Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 782–789 (2007).

    Article  CAS  Google Scholar 

  2. Ferraro, P., Coppola, S., Grilli, S., Paturzo, M. & Vespini, V. Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting. Nature Nanotech. 5, 429–435 (2010).

    Article  CAS  Google Scholar 

  3. Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A. & Flores-Mosquera, M. Focusing capillary jets close to the continuum limit. Nature Phys. 3, 737–742 (2007).

    Article  Google Scholar 

  4. Loscertales, I. G. et al. Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 1695–1698 (2002).

    Article  CAS  Google Scholar 

  5. Collins, R. T., Jones, J. J., Harris, M. T. & Basaran, O. A. Electrohydrodynamic tip streaming and emission of charged drops from liquid cones. Nature Phys. 4, 149–154 (2008).

    Article  CAS  Google Scholar 

  6. Utada, A. S. et al. Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005).

    Article  CAS  Google Scholar 

  7. Velev, O. D., Prevo, B. G. & Bhatt, K. H. On-chip manipulation of free droplets. Nature 426, 515–516 (2003).

    Article  CAS  Google Scholar 

  8. Zheng, Y. M. et al. Directional water collection on wetted spider silk. Nature 463, 640–643 (2010).

    Article  CAS  Google Scholar 

  9. Teh, S. Y., Lin, R., Hung, L. H. & Lee, A. P. Droplet microfluidics. Lab on a Chip 8, 198–220 (2008).

    Article  CAS  Google Scholar 

  10. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microflulidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

  11. Millman, J. R., Bhatt, K. H., Prevo, B. G. & Velev, O. D. Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors. Nature Mater. 4, 98–102 (2005).

    Article  CAS  Google Scholar 

  12. Anzenbacher, P. & Palacios, M. A. Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nature Chem. 1, 80–86 (2009).

    Article  CAS  Google Scholar 

  13. Fenn, J. B. Electrospray wings for molecular elephants. Angew. Chem. Int. Ed. 42, 3871–3894 (2003).

    Article  CAS  Google Scholar 

  14. Tavana, H. et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nature Mater. 8, 736–741 (2009).

    Article  CAS  Google Scholar 

  15. Sparreboom, W., van den Berg, A. & Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nature Nanotech. 4, 713–720 (2009).

    Article  CAS  Google Scholar 

  16. Schoch, R. B., Han, J. Y. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    Article  CAS  Google Scholar 

  17. Whitby, M. & Quirke, N. Fluid flow in carbon nanotubes and nanopipes. Nature Nanotech. 2, 87–94 (2007).

    Article  CAS  Google Scholar 

  18. Rossi, M. P. et al. Environmental scanning electron microscopy study of water in carbon nanopipes. Nano Lett. 4, 989–993 (2004).

    Article  CAS  Google Scholar 

  19. Naguib, N. et al. Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett. 4, 2237–2243 (2004).

    Article  CAS  Google Scholar 

  20. Mattia, D. & Gogotsi, Y. Static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5, 289–305 (2008).

    Article  CAS  Google Scholar 

  21. Kim, B. M., Sinha, S. & Bau, H. H. Optical microscope study of liquid transport in carbon nanotubes. Nano Lett. 4, 2203–2208 (2004).

    Article  CAS  Google Scholar 

  22. Chen, J. Y., Kutana, A., Collier, C. P. & Giapis, K. P. Electrowetting in carbon nanotubes. Science 310, 1480–1483 (2005).

    Article  CAS  Google Scholar 

  23. De Gennes, P. G. Wetting—statics and dynamcis. Rev. Mod. Phys. 57, 827–863 (1985).

    Article  CAS  Google Scholar 

  24. Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    Article  CAS  Google Scholar 

  25. Brochard-Wyart, F., di Meglio, J-M. & Quéré, D. Theory of the dynamics of spreading of liquids on fibers. J. Phys. France 51, 293–306 (1990).

    Article  CAS  Google Scholar 

  26. Lee, S., An, R. & Hunt, A. J. Liquid glass electrodes for nanofluidics. Nature Nanotech. 5, 412–416 (2010).

    Article  CAS  Google Scholar 

  27. Moosavi, A., Rauscher, M. & Dietrich, S. Motion of nanodroplets near edges and wedges. Phys. Rev. Lett. 97, 236101 (2006).

    Article  CAS  Google Scholar 

  28. Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    Article  CAS  Google Scholar 

  29. Mirsaidov, U. M., Zheng, H., Bhattacharya, D., Casana, Y. & Matsudaira, P. Direct observation of stick–slip movements of water nanodroplets induced by an electron beam. Proc. Natl Acad. Sci. USA 109, 7187–7190 (2012).

    Article  CAS  Google Scholar 

  30. Rayleigh, L. On the capillary phenomena of jets. Proc. R. Soc. Lond. 29, 71–97 (1879).

    Article  Google Scholar 

  31. Israelachvili, J. N. Intermolecular and Surface Forces with Applications to Colloidal and Biological Systems 2nd edn (Academic, 1992).

    Google Scholar 

  32. Zhang, S. J., Sun, N., He, X. Z., Lu, X. M. & Zhang, X. P. Physical properties of ionic liquids: database and evaluation. J. Phys. Chem. Ref. Data 35, 1475–1517 (2006).

    Article  CAS  Google Scholar 

  33. Chen, S., Kobayashi, K., Kitaura, R., Miyata, Y. & Shinohara, H. Direct HRTEM observation of ultrathin freestanding ionic liquid film on carbon nanotube grid. ACS Nano 5, 4902–4908 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Centre funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under award DESC0001160. This work was performed, in part, at the Sandia-Los Alamos Centre for Integrated Nanotechnologies (CINT), a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogramme laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the US Department of Energy's National Nuclear Security Administration (under contract no. DE-AC04-94AL85000). Y.C.L., J.J.N., A.K., X.F.Q. and J.L. acknowledge support by the National Science Foundation (NSF; grant DMR-1120901). J.Y.H. thanks Chongmin Wang and Wu Xu for providing the ionic liquid and the SnO2 nanowires. L.Z. and S.X.M. acknowledge support from the NSF (grant CMMI 08 010934) through University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Contributions

J.Y.H. and J.L. conceived and designed the experiments. J.Y.H., A.K. and L.Z. performed the in situ TEM experiments. Y.C.L. and J.L. carried out modelling and simulations. L.Z. and S.X.M. performed TEM imaging analysis. J.J.N. and Y.C.L. performed the optical microscopy experiment. J.J.N., A.K. and X.F.Q. also contributed to the Supplementary Information. Y.C.L., J.Y.H. and J.L. wrote the paper. All authors analysed the data, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ju Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6405 kb)

Supplementary movie S1

Supplementary movie S1 (MOV 18104 kb)

Supplementary movie S2

Supplementary movie S2 (MOV 5094 kb)

Supplementary movie S3

Supplementary movie S3 (MOV 15216 kb)

Supplementary movie S4

Supplementary movie S4 (MOV 12082 kb)

Supplementary movie S5

Supplementary movie S5 (MOV 14135 kb)

Supplementary movie S6

Supplementary movie S6 (MOV 5819 kb)

Supplementary movie S7

Supplementary movie S7 (MOV 13556 kb)

Supplementary movie S8

Supplementary movie S8 (MOV 10795 kb)

Supplementary movie S9

Supplementary movie S9 (MOV 14374 kb)

Supplementary movie S10

Supplementary movie S10 (MOV 1266 kb)

Supplementary movie S11

Supplementary movie S11 (MOV 15338 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Lo, YC., Niu, J. et al. Nanowire liquid pumps. Nature Nanotech 8, 277–281 (2013). https://doi.org/10.1038/nnano.2013.41

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.41

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing