Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes

Abstract

Single-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 µM. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization and 2Dλ imaging analysis of DNA-wrapped SWNT complexes.
Figure 2: Effect of PEGylation for tail-vein-injected SWNTs.
Figure 3: Biodistribution and biocompatibility of PEG-(AAAT)7-SWNTs in 129 mice.
Figure 4: In vivo sensor quenching due to inflammation.
Figure 5: Additional sensor construct with broader in vivo localization possibilities and long-term sensing capabilities.

Similar content being viewed by others

References

  1. Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S. & Reynolds, E. O. Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim. Biophys. Acta 933, 184–192 (1988).

    Article  CAS  Google Scholar 

  2. Heller, D. A. et al. Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotech. 4, 114–120 (2009).

    Article  CAS  Google Scholar 

  3. Jin, H., Heller, D. A., Kim, J. H. & Strano, M. S. Stochastic analysis of stepwise fluorescence quenching reactions on single-walled carbon nanotubes: single molecule sensors. Nano Lett. 8, 4299–4304 (2008).

    Article  CAS  Google Scholar 

  4. Jin, H. et al. Detection of single-molecule H2O2 signalling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes. Nature Nanotech. 5, 302–309 (2010).

    Article  CAS  Google Scholar 

  5. Kim, J. H. et al. The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chem. 1, 473–481 (2009).

    Article  CAS  Google Scholar 

  6. Zhang, J. Q. et al. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J. Am. Chem. Soc. 133, 567–581 (2011).

    Article  CAS  Google Scholar 

  7. Liu, X. et al. Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 32, 144–151 (2011).

    Article  Google Scholar 

  8. Liu, Z. et al. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotech. 2, 47–52 (2007).

    Article  CAS  Google Scholar 

  9. Liu, Z. et al. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–6660 (2008).

    Article  CAS  Google Scholar 

  10. Liu, Z. et al. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl Acad. Sci. USA 105, 1410–1415 (2008).

    Article  CAS  Google Scholar 

  11. Liu, Z. et al. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 48, 7668–7672 (2009).

    Article  CAS  Google Scholar 

  12. Cherukuri, P. et al. Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl Acad. Sci. USA 103, 18882–18886 (2006).

    Article  CAS  Google Scholar 

  13. Singh, R. et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl Acad. Sci. USA 103, 3357–3362 (2006).

    Article  CAS  Google Scholar 

  14. Liu, Z., Tabakman, S., Welsher, K. & Dai, H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009).

    Article  CAS  Google Scholar 

  15. Liu, Z., Tabakman, S. M., Chen, Z. & Dai, H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nature Protoc. 4, 1372–1381 (2009).

    Article  CAS  Google Scholar 

  16. Robinson, J. T. et al. High performance in vivo near-IR (>1 µm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 3, 779–793 (2010).

    Article  CAS  Google Scholar 

  17. Sato, Y. et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo. Mol. BioSyst. 1, 176–182 (2005).

    Article  CAS  Google Scholar 

  18. Schipper, M. L. et al. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nature Nanotech. 3, 216–221 (2008).

    Article  CAS  Google Scholar 

  19. Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotech. 4, 773–780 (2009).

    Article  CAS  Google Scholar 

  20. Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  Google Scholar 

  21. Park, S. S. et al. Real-time in vivo simultaneous measurements of nitric oxide and oxygen using an amperometric dual microsensor. Anal. Chem. 82, 7618–7624 (2010).

    Article  CAS  Google Scholar 

  22. Thomas, D. D. et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Bio. Med. 45, 18–31 (2008).

    Article  CAS  Google Scholar 

  23. Lewis, R. S., Tamir, S., Tannenbaum, S. R. & Deen, W. M. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J. Biol. Chem. 270, 29350–29355 (1995).

    Article  CAS  Google Scholar 

  24. Dedon, P. C. & Tannenbaum, S. R. Reactive nitrogen species in the chemical biology of inflammation. Arch. Biochem. Biophys. 423, 12–22 (2004).

    Article  CAS  Google Scholar 

  25. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    Article  CAS  Google Scholar 

  26. Barone, P. W., Baik, S., Heller, D. A. & Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Mater. 4, 86–U16 (2005).

    Article  CAS  Google Scholar 

  27. Heller, D. A. et al. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science 311, 508–511 (2006).

    Article  CAS  Google Scholar 

  28. Ahn, J. H. et al. Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. Nano Lett. 11, 2743–2752 (2011).

    Article  CAS  Google Scholar 

  29. Choi, J. H., Chen, K. H. & Strano, M. S. Aptamer-capped nanocrystal quantum dots: a new method for label-free protein detection. J. Am. Chem. Soc. 128, 15584–15585 (2006).

    Article  CAS  Google Scholar 

  30. Schoppler, F. et al. Molar extinction coefficient of single-wall carbon nanotubes. J. Phys. Chem. 115, 14682–14686 (2011).

    CAS  Google Scholar 

  31. Donaldson, K. et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22 (2006).

    Article  CAS  Google Scholar 

  32. Lacerda, L., Bianco, A., Prato, M. & Kostarelos, K. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Deliv. Rev. 58, 1460–1470 (2006).

    Article  CAS  Google Scholar 

  33. Poland, C. A. et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 3, 423–428 (2008).

    Article  CAS  Google Scholar 

  34. Gal, A., Tamir, S., Tannenbaum, S. & Wogan, G. Nitric oxide production in SJL mice bearing the RcsX lymphoma: a model for in vivo toxicological evaluation of NO. Proc. Natl Acad. Sci. USA 93, 11499–11503 (1996).

    Article  CAS  Google Scholar 

  35. Lee, R. H., Efron, D., Tantry, U. & Barbul, A. Nitric oxide in the healing wound: a time-course study. J. Surg. Res. 101, 104–108 (2001).

    Article  CAS  Google Scholar 

  36. Davidson, J. M. Animal models for wound repair. Arch. Dermatol. Res. 290, S1–S11 (1998).

    Article  Google Scholar 

  37. Griveau, S. & Bedioui, F. Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Anal. Bioanal. Chem. 405, 3475–3488 (2013).

    Article  CAS  Google Scholar 

  38. Bredt, D. S. & Snyder, S. H. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175–195 (1994).

    Article  CAS  Google Scholar 

  39. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (T32 Training Grant in Environmental Toxicology ES007020, to N.I.), the National Cancer Institute (grant P01 CA26731), the National Institute of Environmental Health Sciences (grant P30 ES002109), a Beckman Young Investigator Award and a National Science Foundation Presidential Early Career Award for Scientists and Engineers (to M.S.S.), the TUBITAK 2211 and 2214 Research fellowship programme (F.S. and S.S.) and the METU-DPT-OYP programme (F.S. and S.S). A Biomedical Innovation grant from Sanofi Aventis to M.S.S. is also acknowledged. The authors thank T. Grusecki for assistance with the deconvolution code, as well as R. Langer, D. Anderson and P. Dedon for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.S.S. conceived of the original concept, with experimental design of in vivo experiments by G.W., M.S.S., N.I. and P.B. Sensor design and synthesis were performed by P.B., M.S., S.S., F.S., T.M., N.R. and N.I. N.I., L.T., M.S., V.I., E.A. and E.F. performed and analysed the in vivo studies. N.I., P.B., M.S., T.M. and N.R. optimized the animal imaging system. V.I. and N.I. designed the mathematical model and computer program to deconvolute the data. N.P. read and interpreted the histology slides. The manuscript was written by M.S.S and N.I. with contributions from G.W., P.B., L.T. and T.M.

Corresponding author

Correspondence to Michael S. Strano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 1155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iverson, N., Barone, P., Shandell, M. et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nature Nanotech 8, 873–880 (2013). https://doi.org/10.1038/nnano.2013.222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2013.222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing