Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-yield self-limiting single-nanowire assembly with dielectrophoresis

A Corrigendum to this article was published on 01 August 2010

This article has been updated

Abstract

Single-crystal nanowire transistors and other nanowire-based devices could have applications in large-area and flexible electronics if conventional top-down fabrication techniques can be integrated with high-precision bottom-up nanowire assembly. Here, we extend dielectrophoretic nanowire assembly to achieve a 98.5% yield of single nanowires assembled over 16,000 patterned electrode sites with submicrometre alignment precision. The balancing of surface, hydrodynamic and dielectrophoretic forces makes the self-assembly process controllable, and a hydrodynamic force component makes it self-limiting. Our approach represents a methodology to quantify nanowire assembly, and makes single nanowire assembly possible over an area limited only by the ability to reproduce process conditions uniformly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of dielectrophoretic assembly process.
Figure 2: Self-limiting dielectrophoretic assembly process.
Figure 3: Critical pinning voltages for nanowire assembly.
Figure 4: Critical pinning voltage, Vpc, versus flow rate.
Figure 5: Optical dark-field and DUV images of nanowires assembled onto electrodes on a 4-inch quartz substrate after the complete process.

Similar content being viewed by others

Change history

  • 09 July 2010

    In the version of this Article originally published, Xiangfeng Duan and Samuel Martin were missing from the author list. Their names and affiliations have now been added to the HTML and PDF versions of the text. The supplementary information, acknowledgements, author contributions and competing financial interests statement have been amended.

References

  1. Smith, P. A. et al. Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399–1401 (2000).

    Article  CAS  Google Scholar 

  2. Boote, J. J. & Evan, S. D. Dielectrophoretic manipulation and electrical characterization of gold nanowires. Nanotechnology 16, 1500–1505 (2005).

    Article  CAS  Google Scholar 

  3. Hamers, R. J. et al. Electrically directed assembly and detection of nanowire bridges in aqueous media. Nanotechnology 17, S280–S286 (2006).

    Article  CAS  Google Scholar 

  4. Liu, Y., Chung, J.-H., Liu, W. K. & Ruoff, R. S. Dielectric assembly of nanowires. J. Phys. Chem. B 110, 14098–14106 (2006).

    Article  CAS  Google Scholar 

  5. Vijayaraghaven, A. et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556–1560 (2007).

    Article  Google Scholar 

  6. Fan, D. L., Cammarata, R. C. & Chien, C. L. Precision transport and assembling of nanowires in suspension by electric fields. Appl. Phys. Lett. 92, 093115 (2008).

    Article  Google Scholar 

  7. Raychaudhuri, S., Dayeh, S. A., Wang, D. & Yu, E. T. Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 9, 2260–2266 (2009).

    Article  CAS  Google Scholar 

  8. Oh, K., Chung, J.-H., Riley, J. J., Lui, Y. & Lui, W. K. Fluid flow-assisted dielectrophoretic assembly of nanowires. Langmuir 23, 11932–11940 (2007).

    Article  CAS  Google Scholar 

  9. Duan, X. et al. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425, 274–278 (2003).

    Article  CAS  Google Scholar 

  10. Cui, Y., Zhing, Z., Wang, D., Wang, W. & Lieber, C. M. High performance silicon nanowires field effect transistors. Nano Lett. 3, 149–152 (2003).

    Article  CAS  Google Scholar 

  11. Tans, S. J., Verchueren R. M. & Dekker, C. Room temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  CAS  Google Scholar 

  12. Evoy, S. et al. Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry. Microelectron. Eng. 75, 31–42 (2004).

    Article  CAS  Google Scholar 

  13. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  CAS  Google Scholar 

  14. Li, M. et al. Bottom-up assembly of large-area nanowire resonator arrays. Nature Nanotech. 3, 88–92 (2008).

    Article  CAS  Google Scholar 

  15. Morrow, T. J., Li, M., Kim, J., Mayer, T. S. & Keating, C. D. Programmed assembly of DNA-coated nanowire devices. Science 323, 352 (2009).

    Article  CAS  Google Scholar 

  16. Brody, J. P., Yager, P., Goldstein, R. E. & Austin, R. H. Biotechnology at low Reynolds numbers. Biophys. J. 71, 3430–3441 (1996).

    Article  CAS  Google Scholar 

  17. Pohl, H. A. Dielectrophoresis Ch. 4 (Cambridge Univ. Press, 1978).

    Google Scholar 

  18. Israelachvili, J. Intermolecular and Surface Forces Ch. 11,13 (Academic Press, 1991).

    Google Scholar 

  19. Hupka, L. et al. Particle–wafer interactions in semiaqueous silicon cleaning systems. Solid State Phenom. 145–146, 77–84 (2009).

    Article  Google Scholar 

  20. Kanda, Y., Nakamura, T. & Higashitani, K. AFM studies of interaction forces between surfaces in alcohol–water solutions. Colloid Surf. A 139, 55–62 (1998).

    Article  CAS  Google Scholar 

  21. Rosés, M., Ràfols, C. & Bosch, E. Autoprotolysis in aqueous organic solvent mixtures. Anal. Chem. 65, 2294–2299 (1993).

    Article  Google Scholar 

  22. Morgan, H., Izquierdo, A. G., Bakewell, D. J., Green, N. G. & Ramos, A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J. Phys. D 34, 1553–1561 (2001).

    Article  CAS  Google Scholar 

  23. Robbins, V. VLS growth of Si nanowires with in situ doping for MOS transistors. IEEE International Conference on Nanotechnology (NANO) 2009, Genoa, Italy, 26–30 July 2009.

  24. Uppalapati, M., Huang, Y.-M., Jackson, T. N. & Hancock, W. O. Microtubule alignment and manipulation using AC electrokinetics. Small 4, 1371–1381 (2008).

    Article  CAS  Google Scholar 

  25. Happel, J. & Brenner, H. Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media (Prentice-Hall, 1965).

    Google Scholar 

  26. Westwater, J., Gosain, D. P. & Usui, S. Control of the size and position of silicon nanowires grown via the vapour–liquid–solid technique. Jpn J. Appl Phys. 36, 6204–6209 (1997).

    Article  CAS  Google Scholar 

  27. Wagner, R. S. & Ellis, W. C. Vapor–liquid–solid mechanism of crystal growth. Appl. Phys. Lett. 4, 89–90 (1964).

    Article  CAS  Google Scholar 

  28. Delgado, A. V., González-Caballero, F., Hunter, R. J., Koopal, L. K. & Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 309, 194–224 (2007).

    Article  CAS  Google Scholar 

  29. Jan, D. & Raghavan, S. Electrokinetic characteristics of nitride wafers in aqueous solutions and their impact on particulate deposition. J. Electrochem. Soc. 141, 2465–2469 (1994).

    Article  CAS  Google Scholar 

  30. Bousse, L. & Mostarshed, S. The zeta potential of silicon nitride thin films. J. Electroanal. Chem. 302, 269–274 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Robbins, A. Fischer-Colbrie, W. Cao, J. Gibes, A. Suess and R. Perez for synthesizing and providing the nanowires used in this work and M. Bonin for fabricating substrates. R. Boehm wrote the image-processing software. The authors would like to acknowledge J. Hamilton for help with fabrication and design contributions to the deposition system, as well as helpful discussions. The authors would also like to thank P. Leon and W. Parce for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.D. and S.M. designed and performed the initial work on the controlled dielectrophoretic assembly of nanowires at Nanosys, Inc. E.F. and D.S. conceived and designed the experiments reported in this manuscript. E.F. performed these experiments and analysed the data. O.G. contributed to the design and fabrication of the hardware. E.F. and D.S. co-wrote the paper.

Corresponding author

Correspondence to Erik M. Freer.

Ethics declarations

Competing interests

All authors have an ownership interest in Nanosys, Inc., and stand to benefit financially if this technology is commercially adopted.

Supplementary information

Supplementary information

Supplementary information (PDF 7339 kb)

Supplementary information

Supplementary movie 1 (MOV 19069 kb)

Supplementary information

Supplementary movie 2 (MOV 1206 kb)

Supplementary information

Supplementary movie 3 (MOV 2291 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freer, E., Grachev, O., Duan, X. et al. High-yield self-limiting single-nanowire assembly with dielectrophoresis. Nature Nanotech 5, 525–530 (2010). https://doi.org/10.1038/nnano.2010.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing