Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A thixotropic nanocomposite gel for three-dimensional cell culture

Abstract

Thixotropic materials, which become less viscous under stress and return to their original state when stress is removed1, have been used to deliver gel–cell constructs2 and therapeutic agents3. Here we show that a polymer–silica nanocomposite thixotropic gel can be used as a three-dimensional cell culture material. The gel liquefies when vortexed—allowing cells and biological components to be added—and resolidifies to trap the components when the shear force from spinning is removed. Good permeability of nutrients and gases through the gel allows various cell types to proliferate and be viable for up to three weeks. Human mesenchymal stem cells cultured in stiffer gels developed bone-like behaviour, showing that the rheological properties of the gel can control cell differentiation. No enzymatic4, chemical5,6, or photo-crosslinking7,8,9, changes in ionic strength10,11,12,13,14 or temperature15,16 are required to form or liquefy the gel, offering a way to sub-culture cells without using trypsin—a protease commonly used in traditional cell culture techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and properties of PEG–silica gels.
Figure 2: Rheological characteristics of PEG–silica gels.
Figure 3: Viability of cells cultured in 3D PEG–silica gels.
Figure 4: Using PEG–silica gels for 3D cell culture.

Similar content being viewed by others

References

  1. Freundlich, H. & Bircumshaw, L. L. Űber das thixotrope verhalten von aluminiumhydroxyd-gelen. Kolloid-Z. 40, 19–20 (1926).

    Article  Google Scholar 

  2. Haines-Butterick, L. et al. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells. Proc. Natl Acad. Sci. USA 104, 7791–7796 (2007).

    Article  Google Scholar 

  3. Gupta, D., Tator, C. H. & Shoichet, M. S. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27, 2370–2379 (2006).

    Article  Google Scholar 

  4. Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128, 1070–1071 (2006).

    Article  Google Scholar 

  5. Kurihara, S., Sakamaki, S., Mogi, S., Ogata, T. & Nonaka, T. Cross-linking of poly(vinyl alcohol)-graft-N-isopropylacrylamide copolymer membranes with glutaraldehyde and permeation of solutes through the membranes. Polymer 37, 1123–1128 (1996).

    Article  Google Scholar 

  6. Martens, P. & Anseth, K. S. Characterization of hydrogels formed from acrylate modified poly (vinyl alcohol) macromers. Polymer 41, 7715–7722 (2000).

    Article  Google Scholar 

  7. Haines, L. A. et al. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 127, 17025–17029 (2005).

    Article  Google Scholar 

  8. Wang, D. A., Williams, C. G., Li, Q., Sharma, B. & Elisseeff, J. H. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 24, 3969–3980 (2003).

    Article  Google Scholar 

  9. Li, Q. et al. Biodegradable and photocrosslinkable phosphoester hydrogel. Biomaterials 27, 1027–1034 (2005).

    Article  Google Scholar 

  10. Yokoi, H., Kinoshita, T. & Zhang, S. Dynamic reassembly of peptide RADA16 nanofibre scaffold. Proc. Natl Acad. Sci. USA 102, 8414–8419 (2005).

    Article  Google Scholar 

  11. Zhang, S., Gelain, F. & Zhao, X. Designer self-assembling peptide nanofibre scaffolds for 3D tissue cell cultures. Semin. Cancer Biol. 15, 413–420 (2005).

    Article  Google Scholar 

  12. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Peptide-amphiphile nanofibres: A versatile scaffold for the preparation of self-assembling materials. Proc. Natl Acad. Sci. USA 99, 5133–5138 (2002).

    Article  Google Scholar 

  13. Bell, C. J. et al. Self-assembling peptides as injectable lubricants for osteoarthritis. J. Biomed. Mater. Res. A 78, 236–246 (2006).

    Article  Google Scholar 

  14. Jayawarna, V. et al. Nanostructured hydrogels for 3D cell culture through self assembly of fluoroenylmethoxycarbonyl-dipeptides. Adv. Mater. 18, 611–614 (2006).

    Article  Google Scholar 

  15. Kleinman, H. K. & Martin, G. R. Matrigel: Basement membrane matrix with biological activity. Semin. Cancer Biol. 15, 378–386 (2005).

    Article  Google Scholar 

  16. Hahn, M. S., Teply, B. A., Stevens, M. M., Zeitels, S. M. & Langer, R. Collagen composite hydrogels for vocal fold lamina propria restoration. Biomaterials 27, 1104–1109 (2006).

    Article  Google Scholar 

  17. Somani, K. P., Patel, N. K., Kansara, S. S. & Rakshit, A. K. Effect of chain length of polyethylene glycol and crosslink density (NCO/OH) on properties of Castor oil based polyurethane elastomers. J. Macromol. Sci. 43, 797–811 (2006).

    Article  Google Scholar 

  18. Sriram, V., Mahesh, G. N., Jeevan, R. G. & Radhakrishnan, G. Comparative studies on short-chain and long-chain cross-linking in polyurethane networks. Macromol. Chem. Phys. 201, 2799–2804 (2001).

    Article  Google Scholar 

  19. Mezger, T. G. The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers (Vencentz Verlog, 2002).

    Google Scholar 

  20. Larson, R. G. The Structure and Rheology of Complex Fluids (Oxford Univ. Press, 1999).

    Google Scholar 

  21. Khan, S. A. & Zoeller, N. J. Dynamic rheological behaviour of flocculated fumed silica suspensions. J. Rheol. 37, 1225–1235 (1993).

    Article  Google Scholar 

  22. Vong, M. S. W., Bazin, N. & Sermon, P. A. Chemical modification of silica gels. J. Sol-Gel Sci. Tech. 8, 499–505 (1997).

    Google Scholar 

  23. Raghavan, S. R., Riley, M. W., Fedkiw, P. S. & Khan, S. A. Composite polymer electrolytes based on poly(ethylene glycol) and hydrophobic fumed silica: Dynamic rheology and microstructure. Chem. Mater. 10, 244–251 (1998).

    Article  Google Scholar 

  24. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  Google Scholar 

  25. Yang, F. et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells. Biomaterials 26, 5991–5998 (2005).

    Article  Google Scholar 

  26. Hosseinkhani, H., Hosseinkhani, M., Tian, F., Kobayashi, H. & Tabata, Y. Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibres. Biomaterials 27, 4079–4086 (2006).

    Article  Google Scholar 

  27. Kisiday, J. et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proc. Natl Acad. Sci. USA 99, 9996–10001 (2002).

    Article  Google Scholar 

  28. Huwart, L. et al. Liver fibrosis: Non-invasive assessment with MR elastography. NMR Biomed. 19, 173–179 (2006).

    Article  Google Scholar 

  29. Steinberg, M. S., Armstrong, P. B. & Granger, R. E. On the recovery of adhesiveness by trypsin dissociated cells. J. Membrane Biol. 13, 97–128 (1973).

    Article  Google Scholar 

  30. Sprunt, E. A. & Bryant, P. E. Effects of trypsin on X-ray-induced cell killing, chromosome abnormalities and kinetics of DNA repair in mammalian cells. Mutat. Res. 228, 211–219 (1990).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Yuangang Zheng, Fan Lee, Bao Guo Hsieh, Karthikeyan Narayanan, Soon Huat Low, Xingfang Su, Su Seong Lee, Yu Han, Kwong Joo Leck and Benjamin Tai for helpful discussions. The HSC-T6 cells used in this study were a generous gift from S. Friedman (Mount Sinai School of Medicine, New York). This work was supported by the Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore).

Author information

Authors and Affiliations

Authors

Contributions

J.Y.Y., A.C.A.W. and Y.S.P. led the project, conducted the data analysis and wrote the paper. Y.S.P., A.C.A.W. and A.S. performed the experiments and collected the data. L.Z. provided cells and discussions for some of the cell culture studies.

Corresponding authors

Correspondence to Andrew C. A. Wan or Jackie Y. Ying.

Supplementary information

Supplementary Information

Supplementary Information (PDF 348 kb)

Supplementary Information

Supplementary Movie S1 (AVI 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pek, Y., Wan, A., Shekaran, A. et al. A thixotropic nanocomposite gel for three-dimensional cell culture. Nature Nanotech 3, 671–675 (2008). https://doi.org/10.1038/nnano.2008.270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.270

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing