Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Doping and phonon renormalization in carbon nanotubes

Abstract

We show that the Raman frequency associated with the vibrational mode at 1,580 cm−1 (the G mode) in both metallic and semiconducting carbon nanotubes shifts in response to changes in the charge density induced by an external gate field. These changes in the Raman spectra provide us with a powerful tool for probing local doping in carbon nanotubes in electronic device structures, or charge carrier densities induced by environmental interactions, on a length scale determined by the light diffraction limit. The G mode shifts to higher frequency and narrows in linewidth in metallic carbon nanotubes at large fields. This behaviour is analogous to that observed recently in graphene. In semiconducting carbon nanotubes, on the other hand, induced changes in the charge density only shift the phonon frequency, but do not affect its linewidth. These spectral changes are quantitatively explained by a model that involves the renormalization of the carbon nanotube phonon energy by the electron–phonon interaction as the carrier density in the carbon nanotube is changed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman spectra of a metallic CNT as a function of gate voltage.
Figure 2: Raman spectra of a semiconducting CNT as a function of gate voltage.
Figure 3: Frequency renormalization and broadening of the CNT G-phonon mode by the electron–phonon interaction.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors: 2005 Edition (Semiconductor Industry Association, 2005). Available online at http://www.itrs.net/Links/2005ITRS/Home2005.htm, 2005.

  2. Avouris, P. Carbon nanotube electronics. Proc. IEEE 91, 1772–1784 (2003).

    Article  CAS  Google Scholar 

  3. Avouris, P. Electronics with carbon nanotubes. Phys. World 20, 40–45 (March 2007).

    Article  Google Scholar 

  4. McEuen, P. L., Fuhrer, M. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol. 1, 78–85 (2002).

    Article  Google Scholar 

  5. Javey, A. et al. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4, 447–450 (2004).

    Article  CAS  Google Scholar 

  6. Chen, J. et al. Self-aligned carbon nanotube transistors with charge transfer doping. Appl. Phys. Lett. 86, 123108 (2005).

    Article  Google Scholar 

  7. Klinke, C. et al. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005).

    Article  CAS  Google Scholar 

  8. Fan, Y., Goldsmith, B. R. & Collins, P. G. Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906–911 (2005).

    Article  CAS  Google Scholar 

  9. Mannik, J. et al. Chemically induced conductance switching in carbon nanotube circuits. Phys. Rev. Lett. 97, 016601 (2006).

    Article  Google Scholar 

  10. Fuhrer, M. S. et al. High-mobility nanotube transistor memory. Nano Lett. 2, 755–759 (2002).

    Article  CAS  Google Scholar 

  11. Kim, W. et al. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193–198 (2003).

    Article  CAS  Google Scholar 

  12. Freitag, M. et al. Electrically excited, localized infrared emission from single carbon nanotubes. Nano Lett. 6, 1425–1433 (2006).

    Article  CAS  Google Scholar 

  13. Strano, M. S. et al. Reversible, band-gap-selective protonation of single-walled carbon nanotubes in solution. J. Phys. Chem. B 107, 6979–6985 (2003).

    Article  CAS  Google Scholar 

  14. Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nat. Mater. 6, 198–201(2007).

    Article  CAS  Google Scholar 

  15. Yan, J. et al. Electric field effect tuning of electron–phonon coupling in graphene. Phys. Rev. Lett. 98, 166802 (2007).

    Article  Google Scholar 

  16. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

    Article  CAS  Google Scholar 

  17. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    Article  CAS  Google Scholar 

  18. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Soliton excitations in polyacetylene. Phys. Rev. 22, 2099–2111 (1980).

    Article  CAS  Google Scholar 

  19. Perebeinos, V., Tersoff, J. & Avouris, P. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005).

    Article  Google Scholar 

  20. Kuper, C. G. & Whitfield, G. D. Polarons and Excitons (Plenum Press, New York, 1963).

    Book  Google Scholar 

  21. Piscanec, S. et al. Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  CAS  Google Scholar 

  22. Peierls, R. E. Quantum Theory of Solids (Clarendon Press, Oxford, 1955).

  23. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).

    Article  CAS  Google Scholar 

  24. Piscanec, S. et al. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 75, 035427 (2007).

    Article  Google Scholar 

  25. Yao, Z., Kane, C. L. & Dekker, C. High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941–2944 (2000).

    Article  CAS  Google Scholar 

  26. Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article  Google Scholar 

  27. Park, J. Y. et al. Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. 4, 517–520 (2004).

    Article  CAS  Google Scholar 

  28. Perebeinos, V., Tersoff, J. & Avouris, P. Electron–phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 086802 (2005).

    Article  Google Scholar 

  29. Lazzeri, M. et al. Phonon linewidths and electron–phonon coupling in graphite and nanotubes. Phys. Rev. B 73, 155426 (2006).

    Article  Google Scholar 

  30. Dresselhaus, M. S. et al. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).

    Article  Google Scholar 

  31. Allen, P. B. Neutron spectroscopy of superconductors. Phys. Rev. B 6, 2577–2579 (1972).

    Article  CAS  Google Scholar 

  32. Allen, P. B. & Silberglitt, R. Some effects of phonon dynamics on electron lifetime, mass renormalization, and superconducting transition temperature. Phys. Rev. B 9, 4733–4741 (1974).

    Article  CAS  Google Scholar 

  33. Lazzeri, M. & Mauri, F. Nonadiabatic Kohn anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006).

    Article  Google Scholar 

  34. Ando, T. Anomaly of optical phonon in monolayer graphene. J. Phys. Soc. Jpn 75, 124701 (2006).

    Article  Google Scholar 

  35. Neto, A. C. & Guinea, F. Electron–phonon coupling and Raman spectroscopy in graphene. Phys. Rev. B 75, 045404 (2007).

    Article  Google Scholar 

  36. Caudal, N. et al. Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys. Rev. B 75, 115423 (2007).

    Article  Google Scholar 

  37. Popov, V. N. & Lambin, P. Resonant Raman intensity of the totally symmetric phonons of single-walled carbon nanotubes. Phys. Rev. B 73, 165425 (2006).

    Article  Google Scholar 

  38. Jiang, J. et al. Exciton–photon, exciton–phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. Phys. Rev. B 75, 035405 (2007).

    Article  Google Scholar 

  39. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    Article  CAS  Google Scholar 

  40. Paillet, M. et al. Vanishing of the Breit–Wigner–Fano component in individual single-wall carbon nanotubes. Phys. Rev. Lett. 94, 237401 (2005).

    Article  CAS  Google Scholar 

  41. Gupta, A . et al. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano Lett. 6, 2667–2673 (2006).

    Article  CAS  Google Scholar 

  42. Wu, Y. et al. Variable electron–phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering. Phys. Rev. Lett. 99, 027402 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ph. Avouris.

Supplementary information

Supplementary Information

Supplementary methods and figure S1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, J., Freitag, M., Perebeinos, V. et al. Doping and phonon renormalization in carbon nanotubes. Nature Nanotech 2, 725–730 (2007). https://doi.org/10.1038/nnano.2007.321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing