Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols

Abstract

The development of nanodevices that exploit the unique properties of nanoparticles1,2 will require high-speed methods for patterning surfaces with nanoparticles over large areas and with high resolution3,4,5,6. Moreover, the technique will need to work with both conducting and non-conducting surfaces. Here we report an ion-induced parallel-focusing approach that satisfies all requirements. Charged monodisperse aerosol nanoparticles are deposited onto a surface patterned with a photoresist while ions of the same polarity are introduced into the deposition chamber in the presence of an applied electric field. The ions accumulate on the photoresist, modifying the applied field to produce nanoscopic electrostatic lenses that focus the nanoparticles onto the exposed parts of the surface. We have demonstrated that the technique could produce high-resolution patterns at high speed on both conducting (p-type silicon) and non-conducting (silica) surfaces. Moreover, the feature sizes in the nanoparticle patterns were significantly smaller than those in the original photoresist pattern.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up and scheme for ion-induced parallel-focusing of nanoparticles.
Figure 2: Particle patterning with ion injection.
Figure 3: Control of focusing with an increase of N2 ion flow rate on a substrate with 230-nm-wide and 135-nm-thick PR patterns.
Figure 4: Various focused nanoparticle patterns on a silica surface of 20-nm thickness on a p-type Si wafer.

Similar content being viewed by others

References

  1. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    Article  CAS  Google Scholar 

  2. Kruis, F. E., Fissan, H. & Peled, A. Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J. Aerosol Sci. 29, 511–535 (1998).

    Article  CAS  Google Scholar 

  3. Jacobs, H. O. & Whitesides, G. M. Submicrometer patterning of charge in thin-film electrets. Science 291, 1763–1766 (2001).

    Article  CAS  Google Scholar 

  4. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272–277 (2003).

    Article  CAS  Google Scholar 

  5. Hamann, H. F., Woods, S. I. & Sun, S. Direct thermal patterning of self-assembled nanoparticles. Nano Lett. 3, 1643–1645 (2003).

    Article  CAS  Google Scholar 

  6. Bullen, D., Chung, S.-W., Wang, X., Zou, J., Mirkin, C. A. & Liu, C. Parallel dip-pen nanolithography with arrays of individually addressable cantilevers. Appl. Phys. Lett. 84, 789–791 (2004).

    Article  CAS  Google Scholar 

  7. Peng, X. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    Article  CAS  Google Scholar 

  8. Lee, D., Yang, S. & Choi, M. Controlled formation of nanoparticles utilizing laser irradiation in a flame and their characteristics. Appl. Phys. Lett. 79, 2459–2461 (2001).

    Article  CAS  Google Scholar 

  9. Madler, L., Kammler, H. K., Mueller, R. & Pratsinis, S. E. Controlled systhesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33, 369–389 (2002).

    Article  CAS  Google Scholar 

  10. Prost, W. et al. Monodisperse aerosol particle deposition: prospects for nanoelectronics. Microelectron. Eng. 41–42, 535–538 (1998).

    Article  Google Scholar 

  11. Otten, F. et al. Lithographic tools for producing patterned films composed of gas phase generated nanocrystals. Mater. Sci. Technol. 18, 717–720 (2002).

    Article  CAS  Google Scholar 

  12. Krinke, T. J. et al. Positioning of nanometer-sized particles on flat surfaces by direct deposition from the gas phase. Appl. Phys. Lett. 78, 3708–3710 (2001).

    Article  CAS  Google Scholar 

  13. Jacobs, H. O., Campbell, S. A. & Steward, M. G. Approaching nanoxerography: the use of electrostatic forces to position nanoparticles with 100 nm scale resolution. Adv. Mater. 14, 1553–1557 (2002).

    Article  CAS  Google Scholar 

  14. Krinke, T. J., Deppert, K., Magnusson, M. H. & Fissan, H. Nanostructured deposition of nanoparticles from the gas phase. Part. Part. Syst. Charact. 19, 321–326 (2002).

    Article  CAS  Google Scholar 

  15. Kang, M. et al. Nanoparticle pattern deposition from gas phase onto charged flat surface. Microelectron. Eng. 71, 229–236 (2004).

    Article  CAS  Google Scholar 

  16. Jayasinghe, S. N., Edirisinghe, M. J. & Wang, D. Z. Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization. Nanotechnology 15, 1519–1523 (2004).

    Article  CAS  Google Scholar 

  17. Wolf, H. & Birringer, R. Pattern formation in an array of magnetic nanoscale rods mimics magnetic-dipole interaction-driven spinodal decomposition. J. Appl. Phys. 98, 074303 (2004).

    Article  Google Scholar 

  18. Tao, A. et al. Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003).

    Article  CAS  Google Scholar 

  19. Hayward, R. C., Saville, D. A. & Aksay, I. A. Electrophoretic assembly of colloidal crystals with optically tunable micropatterns. Nature 404, 56–59 (2000).

    Article  CAS  Google Scholar 

  20. Ristenpart, W. D., Aksay, I. A. & Saville, D. A. Electrically guided assembly of planar superlattices in binary colloidal suspensions. Phys. Rev. Lett. 90, 128303 (2003).

    Article  CAS  Google Scholar 

  21. Fudouzi, H., Kobayashi, M. & Shinya, N. Site-controlled deposition of microsized particles using an electrostatic assembly. Adv. Mater. 14, 1649–1652 (2002).

    Article  CAS  Google Scholar 

  22. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    Article  CAS  Google Scholar 

  23. Lin, Y., Skaff, H., Emrick, T., Dinsmore, A. D. & Russell, T. P. Nanoparticle assembly and transport at liquid–liquid interfaces. Science 299, 226–229 (2003).

    Article  CAS  Google Scholar 

  24. DiFonzo, F. et al. Focused nanoparticle-beam deposition of patterned microstructures. Appl. Phy. Lett. 77, 910–912 (2000).

    Article  CAS  Google Scholar 

  25. Piseri, P., Tafreshi, H. V. & Milani, P. Manipulation of nanoparticles in supersonic beams for the production of nanostructured materials. Curr. Opin. Solid State Mater. Sci. 8, 195–202 (2004).

    Article  CAS  Google Scholar 

  26. Liu, P., Ziemann, P. J., Kittelson, D. B. & McMurry, P. H. Generating particle beams of controlled dimensions and divergence: I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22, 293–313 (1995).

    Article  CAS  Google Scholar 

  27. Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles 2nd edn, 323–338 (Wiley Interscience, New York, 1999).

    Google Scholar 

  28. Suh, J., Han, B., Okuyama, K. & Choi, M. Highly charging of nanoparticles through electrospray of nanoparticle suspension. J. Colloid Interface Sci. 287, 135–140 (2005).

    Article  CAS  Google Scholar 

  29. Chen, D. R. et al. Design and evaluation of a nanometer aerosol differential mobility analyzer (nano-DMA). J. Aerosol Sci. 29, 497–509 (1998).

    Article  CAS  Google Scholar 

  30. Chou, S. Y., Krauss, P. R. & Renstrom, P. J. Imprint lithography with 25-nanometer resolution. Science 272, 85–87 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Creative Research Initiatives program sponsored by Korea Ministry of Science and Technology. We thank H.C. Lee, S. B. Yoo and K. Jun for assistance. KFM measurements were carried out by K. S. Yoon at Psia.

Author information

Authors and Affiliations

Authors

Contributions

H.K., J.K. and M.C. conceived and designed the experiments; H.K., J.K., H.Y., J.S., T.K., B.H., S.K. and D.S.K. performed the experiments; H.K., P.V.P. and M.C. analysed the data. H.K. and J.K. contributed equally to the paper. M.C. and P.V.P. co-wrote the paper.

Corresponding author

Correspondence to Mansoo Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods and figures 1-9 (PDF 3601 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kim, J., Yang, H. et al. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotech 1, 117–121 (2006). https://doi.org/10.1038/nnano.2006.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2006.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing