Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine transporter–mediated conductances increase excitability of midbrain dopamine neurons

Abstract

Uptake by Na+/Cl-dependent neurotransmitter transporters is the principal mechanism by which extracellular biogenic amine concentrations are regulated. In addition to uptake, the cloned transporter proteins also elicit ion channel–like currents, but the physiological consequences of these currents are unknown. Here, whole-cell patch clamp and perforated-patch recordings show that substrates of the dopamine transporter (DAT), such as dopamine (DA) and amphetamine, increase the firing activity of rat DA neurons in culture. We found that these substrates elicit inward currents that are Na+-dependent and blocked by cocaine. These currents are primarily comprised of anions and result in an excitatory response in DA neurons at lower DA concentrations than are required for D2 autoreceptor activation. Thus, in addition to clearing extracellular DA, our results suggest that the currents associated with DAT modulate excitability and may regulate release of neurotransmitter from midbrain DA neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: D2 receptor blockade reveals a stimulation of DA neurons.
Figure 2: DA and amphetamine elicit inward currents.
Figure 3: DAT-mediated currents and transport have a different concentration-dependence.
Figure 4: Substrate-mediated conductances are dependent on internal anions.
Figure 5: DAT-mediated conductance is an anion conductance.
Figure 6: Substrate-mediated anion conductance is depolarizing in gramicidin perforated-patch recordings.

Similar content being viewed by others

References

  1. Ritz, M.C., Lamb, R.J., Goldberg, S.R. & Kuhar, M.J. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223 (1987).

    Article  CAS  Google Scholar 

  2. Wise, R.A. & Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492 (1987).

    Article  CAS  Google Scholar 

  3. Volkow, N.D. et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J. Pharmacol. Exp. Ther. 291, 409–415 (1999).

    CAS  PubMed  Google Scholar 

  4. Sulzer, D., Maidment, N.T. & Rayport, S. Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J. Neurochem. 60, 527–535 (1993).

    Article  CAS  Google Scholar 

  5. Hoffman, A.F., Lupica, C.R. & Gerhardt, G.A. Dopamine transporter activity in the substantia nigra and striatum assessed by high-speed chronoamperometric recordings in brain slices. J. Pharmacol. Exp. Ther. 287, 487–496 (1998).

    CAS  PubMed  Google Scholar 

  6. Mercuri, N.B., Calabresi, P. & Bernardi, G. The mechanism of amphetamine-induced inhibition of rat substantia nigra compacta neurones investigated with intracellular recording in vitro. Br. J. Pharmacol. 98, 127–134 (1989).

    Article  CAS  Google Scholar 

  7. Lacey, M.G., Mercuri, N.B. & North, R.A. Actions of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol. 99, 731–735 (1990).

    Article  CAS  Google Scholar 

  8. Trent, F., Nakamura, S. & Tepper, J.M. Amphetamine exerts anomalous effects on dopaminergic neurons in neonatal rats in vivo. Eur. J. Pharmacol. 204, 265–272 (1991).

    Article  CAS  Google Scholar 

  9. Shi, W.X., Pun, C.L., Zhang, X.X., Jones, M.D. & Bunney, B.S. Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors. J. Neurosci. 20, 3504–3511 (2000).

    Article  CAS  Google Scholar 

  10. Krueger, B.K. Kinetics and block of dopamine uptake in synaptosomes from rat caudate nucleus. J. Neurochem. 55, 260–267 (1990).

    Article  CAS  Google Scholar 

  11. Gu, H., Wall, S.C. & Rudnick, G. Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J. Biol. Chem. 269, 7124–7130 (1994).

    CAS  Google Scholar 

  12. Lester, H.A., Mager, S., Quick, M.W. & Corey, J.L. Permeation properties of neurotransmitter transporters. Annu. Rev. Pharmacol. Toxicol. 34, 219–249 (1994).

    Article  CAS  Google Scholar 

  13. DeFelice, L.J. & Blakely, R.D. Pore models for transporters? Biophys. J. 70, 579–580 (1996).

    Article  CAS  Google Scholar 

  14. Sonders, M.S. & Amara, S.G. Channels in transporters. Curr. Opin. Neurobiol. 6, 294–302 (1996).

    Article  CAS  Google Scholar 

  15. Galli, A., DeFelice, L.J., Duke, B.J., Moore, K.R. & Blakely, R.D. Sodium-dependent norepinephrine-induced currents in norepinephrine-transporter-transfected HEK-293 cells blocked by cocaine and antidepressants. J. Exp. Biol. 198, 2197–2212 (1995).

    CAS  PubMed  Google Scholar 

  16. Mager, S. et al. Conducting states of mammalian serotonin transporter. Neuron 12, 845–859 (1994).

    Article  CAS  Google Scholar 

  17. Bruns, D., Engert, F. & Lux, H.-D. A fast activating presynaptic reuptake current during serotonergic transmission in identified neurons of Hirudo. Neuron 10, 559–572 (1993).

    Article  CAS  Google Scholar 

  18. Jayanthi, L.D., Vargas, G. & DeFelice, L.J. Characterization of cocaine and antidepressant-sensitive norepinephrine transporters in rat placental trophoblasts. Br. J. Pharmacol. 135, 1927–1934 (2002).

    Article  CAS  Google Scholar 

  19. Falkenburger, B.H., Barstow, K.L. & Mintz, I.M. Dendrodendritic inhibition through reversal of dopamine transport. Science 293, 2465–2470 (2001).

    Article  CAS  Google Scholar 

  20. Eshleman, A.J., Henningsen, R.A., Neve, K.A. & Janowsky, A. Release of dopamine via the human transporter. Mol. Pharmacol. 45, 312–316 (1994).

    CAS  PubMed  Google Scholar 

  21. Geffen, L.B., Jessell, T.M., Cuello, A.C. & Iversen, L.L. Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260 (1976).

    Article  CAS  Google Scholar 

  22. Cragg, S.J., Rice, M.E. & Greenfield, S.A. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area and striatum. J. Neurophysiol. 77, 863–873 (1997).

    Article  CAS  Google Scholar 

  23. Jaffe, E.H., Marty, A., Schulte, A. & Chow, R.H. Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. J. Neurosci. 18, 3548–3553 (1998).

    Article  CAS  Google Scholar 

  24. Bunney, B.S. & Aghajanian, G.K. d-Amphetamine-induced depression of central dopamine neurons: evidence for mediation by both autoreceptors and a striato-nigral feedback pathway. Naunyn Schmiedebergs Arch. Pharmacol. 304, 255–261 (1978).

    Article  CAS  Google Scholar 

  25. Prasad, B.M. & Amara, S.G. The dopamine transporter in mesencephalic cultures is refractory to physiological changes in membrane voltage. J. Neurosci. 21, 7561–7567 (2001).

    Article  CAS  Google Scholar 

  26. Franciolini, F. & Nonner, W. Anion and cation permeability of a chloride channel in rat hippocampal neurons. J. Gen. Physiol. 90, 453–478 (1987).

    Article  CAS  Google Scholar 

  27. Sonders, M.S., Zhu, S.-J., Zahniser, N.R., Kavanaugh, M.P. & Amara, S.G. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17, 960–974 (1997).

    Article  CAS  Google Scholar 

  28. Ali, D.W., Catarsi, S. & Drapeau, P. Ionotropic and metabotropic activation of a neuronal chloride channel by serotonin and dopamine in the leech Hirudo medicinalis [see comments]. J. Physiol. (Lond.) 509, 211–219 (1998).

    Article  CAS  Google Scholar 

  29. Wadiche, J.I. & Kavanaugh, M.P. Macroscopic and microscopic properties of a cloned glutamate transporter/chloride channel. J. Neurosci. 18, 7650–7661 (1998).

    Article  CAS  Google Scholar 

  30. Fatima-Shad, K. & Barry, P.H. Anion permeation in GABA- and glycine-gated channels of mammalian cultured hippocampal neurons. Proc. R. Soc. Lond. B Biol. Sci. 253, 69–75 (1993).

    Article  CAS  Google Scholar 

  31. Ebihara, S., Shirato, K., Harata, N. & Akaike, N. Gramicidin-perforated patch recording: GABA response in mammalian neurones with intact intracellular chloride. J. Physiol. 484.1, 77–86 (1995).

    Article  Google Scholar 

  32. Paladini, C.A., Fiorillo, C.D., Morikawa, H. & Williams, J.T. Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nat. Neurosci. 4, 275–281 (2001).

    Article  CAS  Google Scholar 

  33. Cao, Y., Mager, S. & Lester, H.A. H+ permeation and pH regulation at a mammalian serotonin transporter. J. Neurosci. 17, 2257–2266 (1997).

    Article  CAS  Google Scholar 

  34. Sitte, H.H. et al. Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J. Neurochem. 71, 1289–1297 (1998).

    Article  CAS  Google Scholar 

  35. Galli, A., Blakely, R.D. & DeFelice, L.J. Patch-clamp and amperometric recordings from norepinephrine transporters: channel activity and voltage-dependent uptake. Proc. Natl. Acad. Sci. USA 95, 13260–13265 (1998).

    Article  CAS  Google Scholar 

  36. Saunders, C. et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc. Natl. Acad. Sci. USA 97, 6850–6855 (2000).

    Article  CAS  Google Scholar 

  37. Staley, K.J. & Proctor, W.R. Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl- and HCO3- transport. J. Physiol. 519, 693–712 (1999).

    Article  CAS  Google Scholar 

  38. Ciliax, B.J. et al. The dopamine transporter: immunochemical characterization and localization in brain. J. Neurosci. 15, 1714–1723 (1995).

    Article  CAS  Google Scholar 

  39. Nirenberg, M.J., Vaughan, R.A., Uhl, G.R., Kuhar, M.J. & Pickel, V.M. The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons. J. Neurosci. 16, 436–447 (1996).

    Article  CAS  Google Scholar 

  40. Nicholson, L.F., Faull, R.L., Waldvogel, H.J. & Dragunow, M. The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience 50, 355–370 (1992).

    Article  CAS  Google Scholar 

  41. Kuner, T. & Augustine, G.J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).

    Article  CAS  Google Scholar 

  42. Backus, K.H., Deitmer, J.W. & Friauf, E. Glycine-activated currents are changed by coincident membrane depolarization in developing rat auditory brainstem neurones. J. Physiol. 507, 783–794 (1998).

    Article  CAS  Google Scholar 

  43. Eliasof, S. & Jahr, C.E. Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl. Acad. Sci. USA 93, 4153–4158 (1996).

    Article  CAS  Google Scholar 

  44. Otis, T.S., Kavanaugh, M.P. & Jahr, C.E. Postsynaptic glutamate transport at the climbing fiber-Purkinje cell synapse. Science 277, 1515–1518 (1997).

    Article  CAS  Google Scholar 

  45. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).

    Article  CAS  Google Scholar 

  46. Kim, K.-M., Nakajima, Y. & Nakajima, S. G protein-coupled inward recitifier modulated by dopamine agonists in cultured substantia nigra neurons. Neuroscience 69, 1145–1158 (1995).

    Article  CAS  Google Scholar 

  47. Benoit-Marand, M., Borrelli, E. & Gonon, F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J. Neurosci. 21, 9134–9141 (2001).

    Article  CAS  Google Scholar 

  48. Paladini, C.A., Iribe, Y. & Tepper, J.M. GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Res. 832, 145–151 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank K. Poth, M. Sonders and M. Connor for helpful discussions and critical reading of the manuscript. This work was supported by DAO07595, Howard Hughes Medical Institute, and the National Alliance for Research on Schizophrenia and Depression (S.L.I. is an IRIS Project Investigator).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan G. Amara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingram, S., Prasad, B. & Amara, S. Dopamine transporter–mediated conductances increase excitability of midbrain dopamine neurons. Nat Neurosci 5, 971–978 (2002). https://doi.org/10.1038/nn920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn920

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing