Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motor protein–dependent transport of AMPA receptors into spines during long-term potentiation

Abstract

The regulated trafficking of neurotransmitter receptors at synapses is critical for synaptic function and plasticity. However, the molecular machinery that controls active transport of receptors into synapses is largely unknown. We found that, in rat hippocampus, the insertion of AMPA receptors (AMPARs) into spines during synaptic plasticity requires a specific motor protein, which we identified as myosin Va. We found that myosin Va associates with AMPARs through its cargo binding domain. This interaction was enhanced by active, GTP-bound Rab11, which is also transported by the motor protein. Myosin Va mediated the CaMKII-triggered translocation of GluR1 receptors from the dendritic shaft into spines, but it was not required for constitutive GluR2 trafficking. Accordingly, myosin Va was specifically required for long-term potentiation, but not for basal synaptic transmission. In summary, we identified the specific motor protein and organelle acceptor that catalyze the directional transport of AMPARs into spines during activity-dependent synaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Myosin Va associates with AMPARs through the GluR1 C terminus.
Figure 2: Subcellular distribution of myosin Va in neurons and partial colocalization with synaptic proteins.
Figure 3: Myosin Va–dn–mediated depression of AMPA and NMDA currents is dependent on spontaneous activity.
Figure 4: Myosin Va does not participate in constitutive receptor cycling, but is required for LTP and CaMKII-mediated synaptic delivery of GluR1.
Figure 5: Myosin Va is not required for the trafficking of AMPARs into distal apical dendrites.
Figure 6: MyoVa-dn specifically impairs the translocation of GluR1 receptors from dendrites into spines.
Figure 7: MyoVa is not required for the trafficking of PSD-95 into spines or for spine morphology.
Figure 8: MyoVa-dn impairs the translocation of Rab11 from dendrites into spines and Rab11 facilitates the interaction of GluR1 with the MyoVa G tail.

Similar content being viewed by others

References

  1. Kennedy, M.J. & Ehlers, M.D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park, M. et al. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron 52, 817–830 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, J., Jung, S.C., Clemens, A.M., Petralia, R.S. & Hoffman, D.A. Regulation of dendritic excitability by activity-dependent trafficking of the A-type K+ channel subunit Kv4.2 in hippocampal neurons. Neuron 54, 933–947 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol. 23, 613–643 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Luscher, C. et al. Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Nishimune, A. et al. NSF binding to GluR2 regulates synaptic transmission. Neuron 21, 87–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Song, I. et al. Interaction of the N-ethylmaleimide–sensitive factor with AMPA receptors. Neuron 21, 393–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Carlisle, H.J. & Kennedy, M.B. Spine architecture and synaptic plasticity. Trends Neurosci. 28, 182–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Karcher, R.L., Deacon, S.W. & Gelfand, V.I. Motor-cargo interactions: the key to transport specificity. Trends Cell Biol. 12, 21–27 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Osterweil, E., Wells, D.G. & Mooseker, M.S. A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J. Cell Biol. 168, 329–338 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lise, M.F. et al. Involvement of myosin Vb in glutamate receptor trafficking. J. Biol. Chem. 281, 3669–3678 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Triller, A. & Choquet, D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move!. Trends Neurosci. 28, 133–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Mercer, J.A., Seperack, P.K., Strobel, M.C., Copeland, N.G. & Jenkins, N.A. Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349, 709–713 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Naisbitt, S. et al. Interaction of the postsynaptic density–95/guanylate kinase domain–associated protein complex with a light chain of myosin-V and dynein. J. Neurosci. 20, 4524–4534 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walikonis, R.S. et al. Identification of proteins in the postsynaptic density fraction by mass spectrometry. J. Neurosci. 20, 4069–4080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshimura, A. et al. myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr. Biol. 16, 2345–2351 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Pastural, E. et al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet. 16, 289–292 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Sanal, O. et al. An allelic variant of Griscelli disease: presentation with severe hypotonia, mental-motor retardation and hypopigmentation consistent with Elejalde syndrome (neuroectodermal melanolysosomal disorder). J. Neurol. 247, 570–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tabb, J.S., Molyneaux, B.J., Cohen, D.L., Kuznetsov, S.A. & Langford, G.M. Transport of ER vesicles on actin filaments in neurons by myosin V. J. Cell Sci. 111, 3221–3234 (1998).

    CAS  PubMed  Google Scholar 

  24. Takagishi, Y. et al. The dilute lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci. Lett. 215, 169–172 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Petralia, R.S. et al. Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. Eur. J. Neurosci. 13, 1722–1732 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Miyata, M. et al. Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28, 233–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Schnell, E. & Nicoll, R.A. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J. Neurophysiol. 85, 1498–1501 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wenthold, R.J., Petralia, R.S., Blahos, J., II & Niedzielski, A.S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R.G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, J.R., Simonetta, K.R., Sandberg, L.A., Stafford, P. & Langford, G.M. Recombinant globular tail fragment of myosin-V blocks vesicle transport in squid nerve cell extracts. Biol. Bull. 201, 240–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Lapierre, L.A. et al. myosin vb is associated with plasma membrane recycling systems. Mol. Biol. Cell 12, 1843–1857 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodriguez, O.C. & Cheney, R.E. Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J. Cell Sci. 115, 991–1004 (2002).

    CAS  PubMed  Google Scholar 

  33. Zhu, J.J., Esteban, J.A., Hayashi, Y. & Malinow, R. Postnatal synaptic potentiation: delivery of GluR4-containing AMPA receptors by spontaneous activity. Nat. Neurosci. 3, 1098–1106 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Watt, A.J., van Rossum, M.C., MacLeod, K.M., Nelson, S.B. & Turrigiano, G.G. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26, 659–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Gerges, N.Z., Brown, T.C., Correia, S.S. & Esteban, J.A. Analysis of Rab protein function in neurotransmitter receptor trafficking at hippocampal synapses. Methods Enzymol. 403, 153–166 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Ehrlich, I. & Malinow, R. Postsynaptic density–95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J. Neurosci. 24, 916–927 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piccini, A. & Malinow, R. Critical postsynaptic density–95/disc large/zonula occludens–1 interactions by glutamate receptor 1 (GluR1) and GluR2 required at different subcellular sites. J. Neurosci. 22, 5387–5392 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu, J. et al. A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49, 175–182 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A. & Ehlers, M.D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, T.C., Correia, S.S., Petrok, C.N. & Esteban, J.A. Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. J. Neurosci. 27, 13311–13315 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seabra, M.C. & Coudrier, E. Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Jordens, I., Marsman, M., Kuijl, C. & Neefjes, J. Rab proteins, connecting transport and vesicle fusion. Traffic 6, 1070–1077 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Krementsov, D.N., Krementsova, E.B. & Trybus, K.M. myosin V: regulation by calcium, calmodulin and the tail domain. J. Cell Biol. 164, 877–886 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719–721 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Barral, D.C. et al. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247–257 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao, T.T., Chang, W., Masters, S.E. & Mooseker, M.S. myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol. Biol. Cell 15, 151–161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ali, M.Y. et al. myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc. Natl. Acad. Sci. USA 104, 4332–4336 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang, J.D. et al. Direct interaction of microtubule- and actin-based transport motors. Nature 397, 267–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Mehta, A.D. et al. myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Dunah, A.W. et al. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat. Neurosci. 8, 458–467 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to dedicate this work to the memory of Alaa El-Husseini, a great friend and an outstanding scientist. We thank T. Robinson and J. Jedynak for the use of the Neurolucida software, V. Gelfand and R. Holz for the plasmid containing the mouse myosin Va globular tail, D. Wells and M. Mooseker for the human myosin VI, Y. Takagishi for the chicken full-length myosin Va, S. Lee for letting us test an unpublished siRNA against myosin Va (different from the one shown in this study) and R. Malinow for the PSD-95 construct. We also thank L. Weisman, M. Meisler and R. Holz for their comments on this work. This work was supported by grants from the US National Institute of Mental Health (MH070417 to J.A.E. and F31-MH070205 to T.C.B.), Fundação para a Ciência e a Tecnologia (SFRH/BPD/14620 to S.S.C.) and the European Community (LSHM-CT-2004-511995, SYNSCAFF to M.P.).

Author information

Authors and Affiliations

Authors

Contributions

S.S.C. is responsible for most of the experimental work. S.S.C. and J.A.E. designed the experiments and wrote the manuscript. S.B carried out the biochemical experiments of Figure 1 and the immunocytochemistry in Figure 2a,b. T.C.B. contributed some of the electrophysiology and imaging experiments. M.-F.L. developed and characterized the siRNA used in this study. D.S.B. carried out some of the initial cloning of this project. A.E.-H. and M.P. designed and supervised the experiments carried out by M.-F.L. and S.B., respectively.

Corresponding author

Correspondence to José A Esteban.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Methods (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia, S., Bassani, S., Brown, T. et al. Motor protein–dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11, 457–466 (2008). https://doi.org/10.1038/nn2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing