Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages

Abstract

An essential feature of the organization and function of the vertebrate and insect olfactory systems is the generation of a variety of olfactory receptor neurons (ORNs) that have different specificities in regard to both odorant receptor expression and axonal targeting. Yet the underlying mechanisms that generate this neuronal diversity remain elusive. Here we demonstrate that the Notch signal is involved in the diversification of ORNs in Drosophila melanogaster. A systematic clonal analysis showed that a cluster of ORNs housed in each sensillum were differentiated into two classes, depending on the level of Notch activity in their sibling precursors. Notably, ORNs of different classes segregated their axonal projections into distinct domains in the antennal lobes. In addition, both the odorant receptor expression and the axonal targeting of ORNs were specified according to their Notch-mediated identities. Thus, Notch signaling contributes to the diversification of ORNs, thereby regulating multiple developmental events that establish the olfactory map in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reciprocal phenotypes of axonal projections in mam and nb clones.
Figure 2: Combinatorial axonal projections from the Notch-ON– and Notch-OFF–class ORNs.
Figure 3: List of glomeruli receiving axonal projections from Notch-ON– and Notch-OFF–class ORNs.
Figure 4: Clustered distributions of the Notch-ON and Notch-OFF glomeruli.
Figure 5: Notch-mediated cell differentiation in the olfactory sensory lineage.
Figure 6: Notch signaling controls the selection of odorant receptor type and target glomerulus.

Similar content being viewed by others

References

  1. Allan, D.W., St Pierre, S.E., Miguel-Aliaga, I. & Thor, S. Specification of neuropeptide cell identity by the integration of retrograde BMP signaling and a combinatorial transcription factor code. Cell 113, 73–86 (2003).

    Article  CAS  Google Scholar 

  2. Dickson, B.J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    Article  CAS  Google Scholar 

  3. Yoshikawa, S. & Thomas, J.B. Secreted cell signaling molecules in axon guidance. Curr. Opin. Neurobiol. 14, 45–50 (2004).

    Article  CAS  Google Scholar 

  4. Shirasaki, R. & Pfaff, S.L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    Article  CAS  Google Scholar 

  5. McLaughlin, T. & O'Leary, D.D. Molecular gradients and development of retinotopic maps. Annu. Rev. Neurosci. 28, 327–355 (2005).

    Article  CAS  Google Scholar 

  6. Vosshall, L.B., Wong, A.M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147–159 (2000).

    Article  CAS  Google Scholar 

  7. Laissue, P.P. et al. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol. 405, 543–552 (1999).

    Article  CAS  Google Scholar 

  8. Jefferis, G.S., Marin, E.C., Stocker, R.F. & Luo, L. Target neuron prespecification in the olfactory map of Drosophila. Nature 414, 204–208 (2001).

    Article  CAS  Google Scholar 

  9. Couto, A., Alenius, M. & Dickson, B.J. Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535–1547 (2005).

    Article  CAS  Google Scholar 

  10. Fishilevich, E. & Vosshall, L.B. Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548–1553 (2005).

    Article  CAS  Google Scholar 

  11. zur Lage, P.I., Prentice, D.R., Holohan, E.E. & Jarman, A.P. The Drosophila proneural gene amos promotes olfactory sensillum formation and suppresses bristle formation. Development 130, 4683–4693 (2003).

    Article  CAS  Google Scholar 

  12. Sen, A., Reddy, G.V. & Rodrigues, V. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna. Dev. Biol. 254, 79–92 (2003).

    Article  CAS  Google Scholar 

  13. Mombaerts, P. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 22, 487–509 (1999).

    Article  CAS  Google Scholar 

  14. Dobritsa, A.A., van der Goes van Naters, W., Warr, C.G., Steinbrecht, R.A. & Carlson, J.R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003).

    Article  CAS  Google Scholar 

  15. Ang, L.H., Kim, J., Stepensky, V. & Hing, H. Dock and Pak regulate olfactory axon pathfinding in Drosophila. Development 130, 1307–1316 (2003).

    Article  CAS  Google Scholar 

  16. Hummel, T. et al. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Neuron 37, 221–231 (2003).

    Article  CAS  Google Scholar 

  17. Jhaveri, D., Saharan, S., Sen, A. & Rodrigues, V. Positioning sensory terminals in the olfactory lobe of Drosophila by Robo signaling. Development 131, 1903–1912 (2004).

    Article  CAS  Google Scholar 

  18. Komiyama, T., Carlson, J.R. & Luo, L. Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nat. Neurosci. 7, 819–825 (2004).

    Article  CAS  Google Scholar 

  19. Hummel, T. & Zipursky, S.L. Afferent induction of olfactory glomeruli requires N-cadherin. Neuron 42, 77–88 (2004).

    Article  CAS  Google Scholar 

  20. Schuldt, A.J. & Brand, A.H. Mastermind acts downstream of notch to specify neuronal cell fates in the Drosophila central nervous system. Dev. Biol. 205, 287–295 (1999).

    Article  CAS  Google Scholar 

  21. Guo, M., Jan, L.Y. & Jan, Y.N. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41 (1996).

    Article  Google Scholar 

  22. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    Article  CAS  Google Scholar 

  23. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475–481 (2001).

    Article  CAS  Google Scholar 

  24. Smoller, D. et al. The Drosophila neurogenic locus mastermind encodes a nuclear protein unusually rich in amino acid homopolymers. Genes Dev. 4, 1688–1700 (1990).

    Article  CAS  Google Scholar 

  25. Fortini, M.E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in notch receptor signaling. Cell 79, 273–282 (1994).

    Article  CAS  Google Scholar 

  26. Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev. 12, 1858–1870 (1998).

    Article  CAS  Google Scholar 

  27. Lin, D.M. & Goodman, C.S. Ectopic and increased expression of Fasciclin II alters motoneuron growth cone guidance. Neuron 13, 507–523 (1994).

    Article  CAS  Google Scholar 

  28. Nolo, R., Abbott, L.A. & Bellen, H.J. Senseless, a Zn finger transcription factor, is necessary and sufficient for sensory organ development in Drosophila. Cell 102, 349–362 (2000).

    Article  CAS  Google Scholar 

  29. Lai, E.C. & Orgogozo, V. A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev. Biol. 269, 1–17 (2004).

    Article  CAS  Google Scholar 

  30. Lu, B., Rothenberg, M., Jan, L.Y. & Jan, Y.N. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998).

    Article  CAS  Google Scholar 

  31. de Bruyne, M., Clyne, P.J. & Carlson, J.R. Odor coding in a model olfactory organ: the Drosophila maxillary palp. J. Neurosci. 19, 4520–4532 (1999).

    Article  CAS  Google Scholar 

  32. de Bruyne, M., Foster, K. & Carlson, J.R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    Article  CAS  Google Scholar 

  33. Hallem, E.A., Ho, M.G. & Carlson, J.R. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004).

    Article  CAS  Google Scholar 

  34. Ray, K. & Rodrigues, V. Cellular events during development of the olfactory sense organs in Drosophila melanogaster. Dev. Biol. 167, 426–438 (1995).

    Article  CAS  Google Scholar 

  35. Gupta, B.P. & Rodrigues, V. Atonal is a proneural gene for a subset of olfactory sense organs in Drosophila. Genes Cells 2, 225–233 (1997).

    Article  CAS  Google Scholar 

  36. Korsching, S. Olfactory maps and odor images. Curr. Opin. Neurobiol. 12, 387–392 (2002).

    Article  CAS  Google Scholar 

  37. Kreher, S.A., Kwon, J.Y. & Carlson, J.R. The molecular basis of odor coding in the Drosophila larva. Neuron 46, 445–456 (2005).

    Article  CAS  Google Scholar 

  38. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  39. Hallem, E.A. & Carlson, J.R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006).

    Article  CAS  Google Scholar 

  40. Wang, Z., Singhvi, A., Kong, P. & Scott, K. Taste representations in the Drosophila brain. Cell 117, 981–991 (2004).

    Article  CAS  Google Scholar 

  41. Thorne, N., Chromey, C., Bray, S. & Amrein, H. Taste perception and coding in Drosophila. Curr. Biol. 14, 1065–1079 (2004).

    Article  CAS  Google Scholar 

  42. Suh, G.S. et al. A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854–859 (2004).

    Article  CAS  Google Scholar 

  43. Giraldez, A.J., Perez, L. & Cohen, S.M. A naturally occurring alternative product of the mastermind locus that represses notch signalling. Mech. Dev. 115, 101–105 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Buchner, A. Hofbauer, H. Bellen, F. Matsuzaki, Y. Hiromi and Y.-N. Jan for antibodies and L. Luo, L. Vosshall, K. Matsuno, the Bloomington stock center and the Drosophila Genetic Resource Center, Kyoto Institute of Technology, for fly stocks. We are grateful to K. Ito for the use of his laboratory's facility and also to all members of the Hama laboratory and Center for Developmental Biology for helpful discussion. This work was partly supported by a grant-in-aid for Scientific Research on Priority Areas, Advanced Brain Science Project, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

K.E. designed and performed most of the experiments in this study. T.A. and Y.Y. assisted in the experiments. K.-i.K. identified a fly line AM29, which drives reporter gene expression in ORNs projecting to two glomeruli. K.E. and C.H. contributed to the writing of this paper.

Corresponding author

Correspondence to Chihiro Hama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, K., Aoki, T., Yoda, Y. et al. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci 10, 153–160 (2007). https://doi.org/10.1038/nn1832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing