Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals

Abstract

Transformation of mechanical energy into ionic currents is essential for touch, hearing and nociception. Although DEG/ENaC proteins are believed to form sensory mechanotransduction channels, the evidence for this role remains indirect. By recording from C. elegans touch receptor neurons in vivo, we found that external force evokes rapidly activating mechanoreceptor currents (MRCs) carried mostly by Na+ and blocked by amiloride—characteristics consistent with direct mechanical gating of a DEG/ENaC channel. Like mammalian Pacinian corpuscles, these neurons depolarized with both positive and negative changes in external force but not with sustained force. Null mutations in the DEG/ENaC gene mec-4 and in the accessory ion channel subunit genes mec-2 and mec-6 eliminated MRCs. In contrast, the genetic elimination of touch neuron–specific microtubules reduced, but did not abolish, MRCs. Our findings link the application of external force to the activation of a molecularly defined metazoan sensory transduction channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo recording from wild-type C. elegans touch neurons.
Figure 2: MRCs increase in proportion to the applied stimulus.
Figure 3: MRCs are carried by Na+ ions and blocked by amiloride.
Figure 4: Nonstationary noise analysis of MRCs.
Figure 5: Null mutations in genes that disrupt touch sensation abolish MRCs but do not affect other ionic currents in PLM cells.
Figure 6: Mutations that disrupt touch sensation and reduce, but do not abolish, MRCs.

Similar content being viewed by others

References

  1. Ernstrom, G.G. & Chalfie, M. Genetics of sensory mechanotransduction. Annu. Rev. Genet. 36, 411–453 (2002).

    Article  CAS  Google Scholar 

  2. Goodman, M.B. et al. MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415, 1039–1042 (2002).

    Article  CAS  Google Scholar 

  3. Chelur, D.S. et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420, 669–673 (2002).

    Article  CAS  Google Scholar 

  4. Zhang, S. et al. MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr. Biol. (in the press) (2004).

  5. Suzuki, H. et al. in vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39, 1005–1017 (2003).

    Article  CAS  Google Scholar 

  6. Goodman, M.B., Hall, D.H., Avery, L. & Lockery, S.R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20, 763–772 (1998).

    Article  CAS  Google Scholar 

  7. Alvarez-Buylla, R. & De Arellano, J.R. Local responses in Pacinian corpuscles. Am. J. Physiol. 172, 237–250 (1953).

    Article  CAS  Google Scholar 

  8. Gray, J. & Sato, M. Properties of the receptor potential in Pacinian corpuscles. J. Physiol. (Lond.) 122, 610–636 (1953).

    Article  CAS  Google Scholar 

  9. Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

    Article  CAS  Google Scholar 

  10. Johnston, D. & Wu, S. Foundations of Cellular Neurophysiology (MIT Press, Cambridge, Massachusetts, USA, 1995).

    Google Scholar 

  11. Rankin, C.H. & Wicks, S.R. Mutations of the Caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself. J. Neurosci. 20, 4337–4344 (2000).

    Article  CAS  Google Scholar 

  12. Wicks, S.R. & Rankin, C.H. Integration of mechanosensory stimuli in Caenorhabditis elegans. J. Neurosci. 15, 2434–2444 (1995).

    Article  CAS  Google Scholar 

  13. Heinemann, S.H. & Conti, F. Nonstationary noise analysis and application to patch clamp recordings. Meth. Enzymol. 207, 131–148 (1992).

    Article  CAS  Google Scholar 

  14. Kellenberger, S. & Schild, L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol. Rev. 82, 735–767 (2002).

    Article  CAS  Google Scholar 

  15. Huang, M., Gu, G., Ferguson, E.L. & Chalfie, M. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378, 292–295 (1995).

    Article  CAS  Google Scholar 

  16. Hong, K., Mano, I. & Driscoll, M. in vivo structure-function analyses of Caenorhabditis elegans MEC-4, a candidate mechanosensory ion channel subunit. J. Neurosci. 20, 2575–2588 (2000).

    Article  CAS  Google Scholar 

  17. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    Article  CAS  Google Scholar 

  18. Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467–469 (1994).

    Article  CAS  Google Scholar 

  19. Savage, C. et al. mec-7 is a β-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3, 870–881 (1989).

    Article  CAS  Google Scholar 

  20. Chalfie, M. & Thomson, J.N. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J. Cell Biol. 93, 15–23 (1982).

    Article  CAS  Google Scholar 

  21. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    Article  CAS  Google Scholar 

  22. Corey, D.P. & Hudspeth, A.J. Response latency of vertebrate hair cells. Biophys. J. 26, 499–506 (1979).

    Article  CAS  Google Scholar 

  23. Walker, R.G., Willingham, A.T. & Zuker, C.S. A Drosophila mechanosensory transduction channel. Science 287, 2229–2234 (2000).

    Article  CAS  Google Scholar 

  24. Hardie, R.C. Phototransduction in Drosophila melanogaster. J. Exp. Biol. 204, 3403–3409 (2001).

    CAS  PubMed  Google Scholar 

  25. Tavernarakis, N., Shreffler, W., Wang, S. & Driscoll, M. unc-8, a DEG/ENaC family member, encodes a subunit of a candidate mechanically gated channel that modulates C. elegans locomotion. Neuron 18, 107–119 (1997).

    Article  CAS  Google Scholar 

  26. Ainsley, J.A. et al. Enhanced locomotion caused by loss of the Drosophila DEG/ENaC protein Pickpocket1. Curr. Biol. 13, 1557–1563 (2003).

    Article  CAS  Google Scholar 

  27. Price, M.P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    Article  CAS  Google Scholar 

  28. Price, M.P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).

    Article  CAS  Google Scholar 

  29. Garcia-Anoveros, J., Samad, T.A., Woolf, C.J. & Corey, D.P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).

    Article  CAS  Google Scholar 

  30. Roza, C. et al. Knockout of the ASIC2 channel does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J. Physiol. 558, 659–669 (2004).

    Article  CAS  Google Scholar 

  31. Hoger, U., Torkkeli, P.H., Seyfarth, E.A. & French, A.S. Ionic selectivity of mechanically activated channels in spider mechanoreceptor neurons. J. Neurophysiol. 78, 2079–2085 (1997).

    Article  CAS  Google Scholar 

  32. Juusola, M., Seyfarth, E.A. & French, A.S. Sodium-dependent receptor current in a new mechanoreceptor preparation. J. Neurophysiol. 72, 3026–3028 (1994).

    Article  CAS  Google Scholar 

  33. Diamond, J., Gray, J.A.B. & Inman, D.R. The relation between receptor potentials and the concentration of sodium ions. J. Physiol. (Lond.) 142, 382–394 (1958).

    Article  CAS  Google Scholar 

  34. Ottoson, D. The effect of sodium deficiency on the response of the isolated muscle spindle. J. Physiol. (Lond.) 171, 109–118 (1964).

    Article  CAS  Google Scholar 

  35. Drummond, H.A., Abboud, F.M. & Welsh, M.J. Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res. 884, 1–12 (2000).

    Article  CAS  Google Scholar 

  36. Mello, C. & Fire, A. DNA transformation. Methods Cell Biol. 48, 451–482 (1995).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Identification of genes expressed in C. elegans touch receptor neurons. Nature 418, 331–335 (2002).

    Article  CAS  Google Scholar 

  38. Savage, C. et al. Mutations in the Caenorhabditis elegans β-tubulin gene mec-7: effects on microtubule assembly and stability and on tubulin autoregulation. J. Cell Sci. 107, 2165–2175 (1994).

    CAS  PubMed  Google Scholar 

  39. Goodman, M.B. & Lockery, S.R. Pressure polishing: a method for re-shaping patch pipettes during fire polishing. J. Neurosci. Methods 100, 13–15 (2000).

    Article  CAS  Google Scholar 

  40. Plasterk, R.H. Reverse genetics: from sequence to mutant worm. in Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 59–78 (Academic Press, San Diego, USA, 1995).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank J. Cueva for electron microscopy and stereology measurements; A. Meshel for help devising the calibration method for stimulus probes; A. Kovach and S. Lockery for assistance; and R. Aldrich and D. Lenzi for comments on the manuscript. This research funded by a Howard Hughes Medical Institute predoctoral fellowship to R.O., National Institutes of Health grant GM20997 to M.C., and faculty fellowships from the Donald B. and Delia E. Baxter and Alfred P. Sloan Foundations to M.B.G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Chalfie or Miriam B Goodman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Behavioral touch sensitivity in wild type and mec-4 animals. Both e1339 and u316 show greater touch response rates for stimuli delivered to the tail than for those delivered to the head; the reason for this difference in sensitivity is unknown. Wild type and the null allele mec-4(u253) are shown for comparison. Between 25 and 61 animals were tested for each genotype. (PDF 99 kb)

Supplementary Table 1 (PDF 20 kb)

Supplementary Methods (PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Hagan, R., Chalfie, M. & Goodman, M. The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8, 43–50 (2005). https://doi.org/10.1038/nn1362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing