Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of glycine-activated ion channel function by G-protein βγ subunits

Abstract

Glycine receptors (GlyRs), together with GABAA and nicotinic acetylcholine (ACh) receptors, form part of the ligand-activated ion channel superfamily and regulate the excitability of the mammalian brain stem and spinal cord. Here we report that the ability of the neurotransmitter glycine to gate recombinant and native ionotropic GlyRs is modulated by the G protein βγ dimer (Gβγ). We found that the amplitude of the glycine-activated Cl current was enhanced after application of purified Gβγ or after activation of a G protein–coupled receptor. Overexpression of three distinct G protein α subunits (Gα), as well as the Gβγ scavenger peptide ct-GRK2, significantly blunted the effect of G protein activation. Single-channel recordings from isolated membrane patches showed that Gβγ increased the GlyR open probability (nPo). Our results indicate that this interaction of Gβγ with GlyRs regulates both motor and sensory functions in the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of G-protein activation on recombinant and native glycine receptors.
Figure 2: Effects of G-protein activation on synaptic currents.
Figure 3: Enhancement of GlyR function was blocked by reducing availability of Gβγ.
Figure 4: Gβγ dimers affect α1 homomeric GlyR function.
Figure 5: Gβγ overexpression tonically modulates the GlyR.
Figure 6: Modulation of spinal GlyRs by metabotropic GABAB receptors.

Similar content being viewed by others

References

  1. Betz, H. Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci. 14, 458–461 (1991).

    Article  CAS  Google Scholar 

  2. Legendre, P. The glycinergic inhibitory synapse. Cell. Mol. Life Sci. 58, 760–793 (2001).

    Article  CAS  Google Scholar 

  3. Schmid, K., Bohmer, G. & Gebauer, K. Glycine receptor-mediated fast synaptic inhibition in the brainstem respiratory system. Respir. Physiol. 84, 351–361 (1991).

    Article  CAS  Google Scholar 

  4. Harris, R.A. Ethanol actions on multiple ion channels: which are important? Alcohol: Clin. Exp. Res. 23, 1563–1570 (1999).

    CAS  Google Scholar 

  5. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABAA and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  Google Scholar 

  6. Song, Y. & Huang, L.Y. Modulation of glycine receptor chloride channels by cAMP dependent protein kinase in spinal trigeminal neurons. Nature 348, 242–245 (1990).

    Article  CAS  Google Scholar 

  7. Vaello, M.L., Ruiz-Gomez, A., Lerma, J. & Mayor, F. Modulation of inhibitory glycine receptors by phosphorylation by protein kinase C and cAMP-dependent protein kinase. J. Biol. Chem. 269, 2002–2008 (1994).

    CAS  PubMed  Google Scholar 

  8. Ahmadi, S., Lippross, S., Neuhuber, W.L. & Zeilhofer, H.U. PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat. Neurosci. 5, 34–40 (2002).

    Article  CAS  Google Scholar 

  9. Gilman, A.G. Nobel Lecture: G proteins and regulation of adenylyl cyclase. Biosci. Rep. 15, 65–97 (1995).

    Article  CAS  Google Scholar 

  10. Hamm, H.E. The many faces of G protein signaling. J. Biol. Chem. 273, 669–672 (1998).

    Article  CAS  Google Scholar 

  11. Clapham, D.E. & Neer, E.J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  Google Scholar 

  12. Ikeda, S.R. & Dunlap, K. Voltage-dependent modulation of N-type calcium channels: Role of G protein subunits. Adv. Second Messenger Phosphoprotein Res. 33, 131–151 (1999).

    Article  CAS  Google Scholar 

  13. Dolphin, A.C. Mechanisms of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. 506, 3–11 (1998).

    Article  CAS  Google Scholar 

  14. Mark, M.D. & Herlitze, S. G-protein mediated gating of inward-rectifier K+ channels. Eur. J. Biochem. 267, 5830–5836 (2000).

    Article  CAS  Google Scholar 

  15. De Ward, M. et al. Direct binding of G-protein βγ complex to voltage-dependent calcium channels. Nature 385, 446–450 (1997).

    Article  Google Scholar 

  16. Canti, C., Page, K.M., Stephens, G.J. & Dolphin, A.C. Identification of residues in the N terminus of alpha1B critical for inhibition of the voltage-dependent calcium channel by Gβγ. J. Neurosci. 19, 6855–6864 (1999).

    Article  CAS  Google Scholar 

  17. Krapivinsky, G., Krapivinsky, L., Wickman, K. & Clapham, D.E. Gβγ binds directly to the G protein-gated K+ channel, IKACh . J. Biol. Chem. 270, 29059–29062 (1995).

    Article  CAS  Google Scholar 

  18. Ruegg, U.T. & Burgess, G.M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. 10, 218–220 (1989).

    Article  CAS  Google Scholar 

  19. Jeong, S.W. & Ikeda, S.R. Sequestration of G-protein βγ subunits by different G-protein α subunits blocks voltage-dependent modulation of Ca2+ channels in rat sympathetic neurons. J. Neurosci. 19, 4755–4761 (1999).

    Article  CAS  Google Scholar 

  20. Daaka, Y. et al. Receptor and Gβγ isoform-specific interactions with G protein-coupled receptor kinases. Proc. Natl. Acad. Sci. USA 94, 2180–2185 (1997).

    Article  CAS  Google Scholar 

  21. Blackmer, T. et al. G protein βγ subunit-mediated presynaptic inhibition: regulation of exocytotic fusion downstream of Ca2+ entry. Science 292, 293–297 (2001).

    Article  CAS  Google Scholar 

  22. Kammermeier, P.J. & Ikeda, S.R. Expression of RGS2 alters the coupling of metabotropic glutamate receptor 1a to M-type K+ and N-type Ca2+ channels. Neuron 22, 819–829 (1999).

    Article  CAS  Google Scholar 

  23. Diverse-Pierluissi, M. et al. Selective coupling of G protein βγ complexes to inhibition of Ca2+ channels. J. Biol. Chem. 275, 28380–28385 (2000).

    Article  CAS  Google Scholar 

  24. Hille, B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 17, 531–536 (1994).

    Article  CAS  Google Scholar 

  25. Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. & Clapham, D.E. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 28, 321–326 (1987).

    Article  Google Scholar 

  26. Wickman, K.D. et al. Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 368, 255–257 (1994).

    Article  CAS  Google Scholar 

  27. Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Openings of the rat recombinant α1 homomeric glycine receptor as a function of the number of agonist molecules bound. J. Gen. Physiol. 119, 443–466 (2002).

    Article  CAS  Google Scholar 

  28. Ruiz-Velasco, V. & Ikeda, S.R. Multiple G-protein βγ combinations produce voltage-dependent inhibition of N-type calcium channels in rat superior cervical ganglion neurons. J. Neurosci. 20, 2183–2191 (2000).

    Article  CAS  Google Scholar 

  29. Ruiz-Velasco, V. & Ikeda, S.R. Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J. Physiol. 537, 679–692 (2001).

    Article  CAS  Google Scholar 

  30. Couve, A., Moss, S.J. & Pangalos, M.N. GABAB receptors: a new paradigm in G-protein signaling. Mol. Cell. Neurosci. 16, 296–312 (2000).

    Article  CAS  Google Scholar 

  31. Luscher, C., Jan, L.Y., Stoffel, M., Malenka, R.C. & Nicoll, R.A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    Article  CAS  Google Scholar 

  32. Sawynok, J. GABAergic mechanisms in antinociception. Prog. Neuropsychopharmacol. Biol. Psychiatry 8, 581–586 (1984).

    Article  CAS  Google Scholar 

  33. Hwang, A.S. & Wilcox, G.L. Baclofen, γ-aminobutyric acidB receptors and substance P in the mouse spinal cord. J. Pharmacol. Exp. Ther. 248, 1026–1033 (1989).

    CAS  PubMed  Google Scholar 

  34. Kangrga, I., Jiang, M.C. & Randic, M. Actions of (–)-baclofen on rat dorsal horn neurons. Brain Res. 562, 265–275 (1991).

    Article  CAS  Google Scholar 

  35. Towers, S. et al. GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur. J. Neurosci. 12, 3201–3210 (2000).

    Article  CAS  Google Scholar 

  36. Scanziani, M. GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron 25, 673–681 (2000).

    Article  CAS  Google Scholar 

  37. Jonas, P., Bischofberger, J. & Sandkuhler, J. Corelease of two fast neurotransmitters at a central synapse. Science 281, 419–424 (1998).

    Article  CAS  Google Scholar 

  38. Hille, B. Ion Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 2001).

    Google Scholar 

  39. Colquhoun, D. Binding, gating, affinity and efficacy: the interpretation of structure- activity relationships for agonists and of the effects of mutating receptors. Br. J. Pharmacol. 125, 924–947 (1998).

    Article  CAS  Google Scholar 

  40. Rogers, C.J., Twyman, R.E. & Macdonald, R.L. Benzodiazepine and beta-carboline regulation of single GABAA receptor channels of mouse spinal neurones in culture. J. Physiol. 475, 69–82 (1994).

    Article  CAS  Google Scholar 

  41. Bean, B.P. Neurotransmitter inhibition of neuronal calcium currents by changes in voltage dependence. Nature 340, 153–156 (1989).

    Article  CAS  Google Scholar 

  42. Kneussel, M. & Betz, H. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci. 23, 429–435 (2000).

    Article  CAS  Google Scholar 

  43. Tapia, J.C. et al. Early expression of glycine and GABAA receptors in developing spinal cord neurons. Effects on neurite outgrowth. Neuroscience 108, 493–506 (2001).

    Article  CAS  Google Scholar 

  44. van Zundert, B. et al. Glycine receptors involved in synaptic transmission are selectively regulated by the cytoskeleton in mouse spinal neurons. J. Neurophysiol. 87, 640–644 (2002).

    Article  CAS  Google Scholar 

  45. Geiman, E.J., Zheng, W., Fritschy, J.M. & Alvarez, F.J. Glycine and GABAA receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters. J. Comp. Neurol. 444, 275–289 (2002).

    Article  CAS  Google Scholar 

  46. Asano, T., Morishita, R., Ueda, H. & Kato, K. Selective association of G protein β4 with γ5 and γ12 subunits in bovine tissues. J. Biol. Chem. 274, 21425–21429 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.R. Ikeda and N.L. Harrison for the plasmids, S.R. Ikeda for critically reading the manuscript, and L.J. Aguayo, A. Ghazanfari and J.T. Healey for technical assistance. This work was supported by Fondecyt, GIA-DIUC (L.G.A. and J.O.), and by the National Institute on Alcohol Abuse and Alcoholism intramural program (R.W.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G Aguayo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevenes, G., Peoples, R., Tapia, J. et al. Modulation of glycine-activated ion channel function by G-protein βγ subunits. Nat Neurosci 6, 819–824 (2003). https://doi.org/10.1038/nn1095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1095

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing