Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses

Abstract

Exposures to cocaine and morphine produce similar adaptations in nucleus accumbens (NAc)-based behaviors, yet produce very different adaptations at NAc excitatory synapses. In an effort to explain this paradox, we found that both drugs induced NMDA receptor–containing, AMPA receptor-silent excitatory synapses, albeit in distinct cell types through opposing cellular mechanisms. Cocaine selectively induced silent synapses in D1-type neurons, likely via a synaptogenesis process, whereas morphine induced silent synapses in D2-type neurons via internalization of AMPA receptors from pre-existing synapses. After drug withdrawal, cocaine-generated silent synapses became 'unsilenced' by recruiting AMPA receptors to strengthen excitatory inputs to D1-type neurons, whereas morphine-generated silent synapses were likely eliminated to weaken excitatory inputs to D2-type neurons. Thus, these cell type–specific, opposing mechanisms produced the same net shift of the balance between excitatory inputs to D1- and D2-type NAc neurons, which may underlie certain common alterations in NAc-based behaviors induced by both classes of drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exposure to morphine generates silent synapses in NAc MSNs.
Figure 2: Morphine-induced generation of silent synapses is mediated by AMPAR internalization.
Figure 3: Alterations in spine morphology of rat NAc MSNs 1 d after morphine or cocaine administration.
Figure 4: Alterations in spine morphology of rat NAc MSNs 21 d after morphine or cocaine administration.
Figure 5: Drug-induced alterations in spine morphology of mouse NAc MSNs.
Figure 6: Cell type–specific generation of silent synapses after exposure to cocaine or morphine remodels excitatory circuits in the NAc.
Figure 7: Intra-NAc infusion of GluA23Y peptide selectively impairs the retention of morphine-induced CPP.

Similar content being viewed by others

References

  1. Wolf, M.E. The Bermuda Triangle of cocaine-induced neuroadaptations. Trends Neurosci. 33, 391–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Robinson, T.E., Gorny, G., Savage, V.R. & Kolb, B. Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse 46, 271–279 (2002).

    CAS  PubMed  Google Scholar 

  3. Robinson, T.E. & Kolb, B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598–1604 (1999).

    CAS  PubMed  Google Scholar 

  4. Dong, Y. & Nestler, E.J. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol. Sci. 35, 374–383 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang, Y.H., Schlüter, O.M. & Dong, Y. Silent synapses speak up: updates of the neural rejuvenation hypothesis of drug addiction. Neuroscientist 21, 451–459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kerchner, G.A. & Nicoll, R.A. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9, 813–825 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanse, E., Seth, H. & Riebe, I. AMPA-silent synapses in brain development and pathology. Nat. Rev. Neurosci. 14, 839–850 (2013).

    CAS  PubMed  Google Scholar 

  8. Huang, Y.H. et al. In vivo cocaine experience generates silent synapses. Neuron 63, 40–47 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, B.R. et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 16, 1644–1651 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma, Y.Y. et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83, 1453–1467 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown, T.E. et al. A silent synapse-based mechanism for cocaine-induced locomotor sensitization. J. Neurosci. 31, 8163–8174 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lobo, M.K. et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lobo, M.K. & Nestler, E.J. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front. Neuroanat. 5, 41 (2011).

    PubMed  PubMed Central  Google Scholar 

  14. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Spanagel, R. et al. Acamprosate suppresses the expression of morphine-induced sensitization in rats but does not affect heroin self-administration or relapse induced by heroin or stress. Psychopharmacology (Berl.) 139, 391–401 (1998).

    CAS  Google Scholar 

  16. Mueller, D., Perdikaris, D. & Stewart, J. Persistence and drug-induced reinstatement of a morphine-induced conditioned place preference. Behav. Brain Res. 136, 389–397 (2002).

    CAS  PubMed  Google Scholar 

  17. Kullmann, D.M. Amplitude fluctuations of dual-component EPSCs in hippocampal pyramidal cells: implications for long-term potentiation. Neuron 12, 1111–1120 (1994).

    CAS  PubMed  Google Scholar 

  18. Liao, D., Hessler, N.A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    CAS  PubMed  Google Scholar 

  19. Boudreau, A.C. & Wolf, M.E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Brebner, K. et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 310, 1340–1343 (2005).

    CAS  PubMed  Google Scholar 

  22. Shen, H.W. et al. Altered dendritic spine plasticity in cocaine-withdrawn rats. J. Neurosci. 29, 2876–2884 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  Google Scholar 

  24. Shuen, J.A., Chen, M., Gloss, B. & Calakos, N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J. Neurosci. 28, 2681–2685 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lobo, M.K. et al. ΔFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J. Neurosci. 33, 18381–18395 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, R.J., Lobo, M.K., Spencer, S. & Kalivas, P.W. Cocaine-induced adaptations in D1 and D2 accumbens projection neurons (a dichotomy not necessarily synonymous with direct and indirect pathways). Curr. Opin. Neurobiol. 23, 546–552 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kam, A.Y., Liao, D., Loh, H.H. & Law, P.Y. Morphine induces AMPA receptor internalization in primary hippocampal neurons via calcineurin-dependent dephosphorylation of GluR1 subunits. J. Neurosci. 30, 15304–15316 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Koya, E. et al. Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nat. Neurosci. 15, 1556–1562 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Arellano, J.I., Espinosa, A., Fairén, A., Yuste, R. & DeFelipe, J. Non-synaptic dendritic spines in neocortex. Neuroscience 145, 464–469 (2007).

    CAS  PubMed  Google Scholar 

  30. Grutzendler, J., Kasthuri, N. & Gan, W.B. Long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002).

    CAS  PubMed  Google Scholar 

  31. Zuo, Y., Yang, G., Kwon, E. & Gan, W.B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005).

    CAS  PubMed  Google Scholar 

  32. Khibnik, L.A. et al. Stress and cocaine trigger divergent and cell type-specific regulation of synaptic transmission at single spines in nucleus accumbens. Biol. Psychiatry 79, 898–905 (2015).

    PubMed  PubMed Central  Google Scholar 

  33. Fiala, J.C., Feinberg, M., Popov, V. & Harris, K.M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Knott, G.W., Holtmaat, A., Wilbrecht, L., Welker, E. & Svoboda, K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat. Neurosci. 9, 1117–1124 (2006).

    CAS  PubMed  Google Scholar 

  35. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  36. Takumi, Y., Ramírez-León, V., Laake, P., Rinvik, E. & Ottersen, O.P. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat. Neurosci. 2, 618–624 (1999).

    CAS  PubMed  Google Scholar 

  37. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Racca, C., Stephenson, F.A., Streit, P., Roberts, J.D. & Somogyi, P. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20, 2512–2522 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nimchinsky, E.A., Yasuda, R., Oertner, T.G. & Svoboda, K. The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines. J. Neurosci. 24, 2054–2064 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holtmaat, A.J. et al. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279–291 (2005).

    CAS  PubMed  Google Scholar 

  41. Zito, K., Scheuss, V., Knott, G., Hill, T. & Svoboda, K. Rapid functional maturation of nascent dendritic spines. Neuron 61, 247–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerfen, C.R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    CAS  PubMed  Google Scholar 

  43. Lee, K.W. et al. Cocaine-induced dendritic spine formation in D1 and D2 dopamine receptor-containing medium spiny neurons in nucleus accumbens. Proc. Natl. Acad. Sci. USA 103, 3399–3404 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, J., Park, B.H., Lee, J.H., Park, S.K. & Kim, J.H. Cell type-specific alterations in the nucleus accumbens by repeated exposures to cocaine. Biol. Psychiatry 69, 1026–1034 (2011).

    CAS  PubMed  Google Scholar 

  45. Grueter, B.A., Robison, A.J., Neve, R.L., Nestler, E.J. & Malenka, R.C. ΔFosB differentially modulates nucleus accumbens direct and indirect pathway function. Proc. Natl. Acad. Sci. USA 110, 1923–1928 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. MacAskill, A.F., Cassel, J.M. & Carter, A.G. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nat. Neurosci. 17, 1198–1207 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hearing, M.C. et al. Reversal of morphine-induced cell-type-specific synaptic plasticity in the nucleus accumbens shell blocks reinstatement. Proc. Natl. Acad. Sci. USA 113, 757–762 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hikida, T., Kimura, K., Wada, N., Funabiki, K. & Nakanishi, S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66, 896–907 (2010).

    CAS  PubMed  Google Scholar 

  49. Yawata, S., Yamaguchi, T., Danjo, T., Hikida, T. & Nakanishi, S. Pathway-specific control of reward learning and its flexibility via selective dopamine receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 109, 12764–12769 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamaguchi, T., Danjo, T., Pastan, I., Hikida, T. & Nakanishi, S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron 78, 537–544 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Stinus, L., Cador, M., Zorrilla, E.P. & Koob, G.F. Buprenorphine and a CRF1 antagonist block the acquisition of opiate withdrawal-induced conditioned place aversion in rats. Neuropsychopharmacology 30, 90–98 (2005).

    CAS  PubMed  Google Scholar 

  52. Badiani, A., Camp, D.M. & Robinson, T.E. Enduring enhancement of amphetamine sensitization by drug-associated environmental stimuli. J. Pharmacol. Exp. Ther. 282, 787–794 (1997).

    CAS  PubMed  Google Scholar 

  53. Isaac, J.T., Nicoll, R.A. & Malenka, R.C. Evidence for silent synapses: implications for the expression of LTP. Neuron 15, 427–434 (1995).

    CAS  PubMed  Google Scholar 

  54. Schoenbaum, G., Saddoris, M.P., Ramus, S.J., Shaham, Y. & Setlow, B. Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur. J. Neurosci. 19, 1997–2002 (2004).

    PubMed  Google Scholar 

  55. Blander, A., Hunt, T., Blair, R. & Amit, Z. Conditioned place preference: an evaluation of morphine's positive reinforcing properties. Psychopharmacology (Berl.) 84, 124–127 (1984).

    CAS  Google Scholar 

  56. Koo, J.W. et al. BDNF is a negative modulator of morphine action. Science 338, 124–128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bohn, L.M. et al. Enhanced rewarding properties of morphine, but not cocaine, in beta(arrestin)-2 knock-out mice. J. Neurosci. 23, 10265–10273 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Cai, K. Chua, Y. Li, K. Tang, A. Kim and S. Singh for technical support. The study was supported by NIH NIDA DA035805 (Y.H.H.), MH101147 (Y.H.H.), DA008227 (E.J.N.), DA014133 (E.J.N.) DA023206 (Y.D.), DA034856 (Y.D.), DA040620 (E.J.N., Y.D.), and the Pennsylvania Department of Health (Y.H.H.). Cocaine and morphine were provided by the Drug Supply Program of NIDA NIH.

Author information

Authors and Affiliations

Authors

Contributions

N.M.G., S.S., W.J.W., Y.H.H., E.J.N., Y.T.W., O.M.S. and Y.D. designed the experiments and analyses. N.M.G., S.S., W.J.W., D.J. and Z.L. conducted the experiments and data analyses. N.M.G., Y.H.H., E.J.N., O.M.S. and Y.D. wrote the manuscript.

Corresponding author

Correspondence to Yan Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Co-administration of GluA23Y peptide does not affect cocaine-induced locomotor responses and cocaine-induced CPP.

a Summary showing that co-administration of GluA23Y with cocaine did not affect cocaine-induced locomotor responses over the 5d procedure compared to mice with cocaine injection alone (F8,120=0.9436, p=0.4836, two-way ANOVA). Time line of the experimental procedure is diagramed in Figure 7A. Briefly, mice received saline injections and locomotor activity was assayed on d-1 and d0. On d1-5, locomotor activity was measured following administration of scrambled peptide or GluA23Y (1.5 nm/g, iv) with saline or cocaine (15 mg/kg, ip). On d21, saline- or cocaine-treated mice were challenged with saline then cocaine (15 mg/kg), while saline- or morphine-treated mice were challenged with cocaine (15 mg/kg). b Summary showing that co-administration of GluA23Y during the 5d cocaine procedure did not affect cocaine challenge-induced locomotor responses 21d after the 5d procedure (distance in meters: saline 21.9±1.2, n=10, saline-scrambled 19.8±3.6, n=5, saline-GluA23Y 23.0±3.2, n=4, cocaine 22.9±3.0, n=8, cocaine-scrambled 29.9±2.2, n=10, cocaine-GluA23Y 27.1±2.2, n=9; F5,40=2.422, p=0.05, one-way ANOVA). c Time line of the experimental procedure for drug challenge-induced locomotor responses 21d after the 5d drug procedure. d Summary showing cocaine-induced locomotor responses in two groups of mice with the 5d cocaine procedure (F6,126=0.1425, p=0.99, two-way ANOVA). During the procedure, these mice did not receive co-administration of peptides. e Summary showing that 21d after the 5d cocaine procedure, a cocaine challenge induced similar locomotor responses in mice with GluA23Y or scrambled peptides co-administered with cocaine challenge (distance in meters: scrambled 33.4±2.5, n=10, GluA23Y 30.6±1.7, n=10, t18=0.92, p=0.37; t-test). f Summary showing morphine-induced locomotor responses in two groups of mice with the 5d procedure (F6,102=0.3672, p=0.8981, two-way ANOVA). During the procedure, these mice did not receive co-administration of peptides. g Summary showing that 21d after the 5d cocaine procedure, a morphine challenge induced similar locomotor responses in mice with GluA23Y or scrambled peptides co-administered with morphine challenge (distance in meters: scrambled 54.5±2.9, n=10, GluA23Y 61.3±4.0, n=10, t18=1.38, p=0.18; t-test). h Diagrams showing the cannulation sites where GluA2 peptides were delivered in CPP experiments (open circles, scrambled peptide; filled circles, GluA23Y).

Supplementary Figure 2 Determination of successes and failures of synaptic responses in minimal stimulation assay.

a Trials of the amplitudes of synaptic responses evoked by minimal stimulations. Black dots indicate amplitudes of success and gray dots indicate amplitudes of failures (n=20 rats). Inset: Example traces at -70 or +50 mV containing both successes and failures over continuous trials are stacked. b Stacked traces in a are individually presented. Responses that are deemed failures (in gray) are presented in the upper panel, and responses that are deemed successes (in black) are presented in the lower panel (n=20 mice). Vertical dash lines in black trace #2 in the upper panel indicate the time window during which the averaged amplitudes (mean) of EPSCs were obtained for graphing the trial course in a. c Trials of amplitudes of synaptic responses in an example NAcSh MSN evoked by minimal stimulations at -70 mV, at +50 mV, and at +50 mV with perfusion of the AMPAR-selective antagonist NBQX (5 µM) (n=6 cells). d Example EPSCs taken from the cell in c (n=6 cells). Black traces indicate successful responses and gray traces indicate failed responses (n=6 mice). e Averaged successful traces in three recording conditions as indicated. f Summary showing that the mean amplitudes of EPSCs at +50 mV exhibited a trend to decrease by perfusion of NBQX (n=6 cells; t5=1.97, p=0.10, paired t-test). g Summary showing that % silent synapses was not statistically different when EPSCs were recorded at +50 mV in the presence or absence of NBQX (t5=0.95, p=0.39, paired t-test).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2 (PDF 434 kb)

Supplementary Methods Checklist

(PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graziane, N., Sun, S., Wright, W. et al. Opposing mechanisms mediate morphine- and cocaine-induced generation of silent synapses. Nat Neurosci 19, 915–925 (2016). https://doi.org/10.1038/nn.4313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing