Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region

Subjects

Abstract

Natural environments are uncertain. Uncertainty of emotional outcomes can induce anxiety and raise vigilance, promote and signal the opportunity for learning, modulate economic choice and regulate risk-seeking. Here we demonstrate that a subset of neurons in the anterodorsal region of the primate septum (ADS) are primarily devoted to processing uncertainty in a highly specific manner. Those neurons were selectively activated by visual cues indicating probabilistic delivery of reward (for example, 25%, 50% and 75% reward) and did not respond to cues indicating certain outcomes (0% and 100% reward). The average ADS uncertainty response was graded with the magnitude of reward uncertainty and selectively signaled uncertainty about rewards rather than punishments. The selective and graded information about reward uncertainty encoded by many neurons in the ADS may underlie modulation of uncertainty of value- and sensorimotor-related areas to regulate goal-directed behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responses of reward-uncertainty neurons in the ADS to certain and uncertain predictions of rewards and punishment (experiment 1).
Figure 2: Locations of neurons tested for uncertainty coding.
Figure 3: Responses of reward-uncertainty neurons to information about reward uncertainty and reward amount (experiment 2).
Figure 4: Responses of reward-uncertainty neurons to uncertainty about different valued outcomes (experiment 3).
Figure 5: Responses of reward-uncertainty neurons during learning of novel conditioned stimuli (experiment 4).

Similar content being viewed by others

References

  1. Hirsh, J.B., Mar, R.A. & Peterson, J.B. Psychological entropy: a framework for understanding uncertainty-related anxiety. Psychol. Rev. 119, 304–320 (2012).

    Article  Google Scholar 

  2. Bach, D.R. & Dolan, R.J. Knowing how much you don't know: a neural organization of uncertainty estimates. Nat. Rev. Neurosci. 13, 572–586 (2012).

    Article  CAS  Google Scholar 

  3. Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  CAS  Google Scholar 

  4. Platt, M.L. & Huettel, S.A. Risky business: the neuroeconomics of decision making under uncertainty. Nat. Neurosci. 11, 398–403 (2008).

    Article  CAS  Google Scholar 

  5. Bromberg-Martin, E.S. & Hikosaka, O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63, 119–126 (2009).

    Article  CAS  Google Scholar 

  6. Dayan, P., Kakade, S. & Montague, P.R. Learning and selective attention. Nat. Neurosci. 3 (suppl.), 1218–1223 (2000).

    Article  CAS  Google Scholar 

  7. Pearce, J.M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  Google Scholar 

  8. Yu, A.J. & Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 46, 681–692 (2005).

    Article  CAS  Google Scholar 

  9. Schultz, W. et al. Explicit neural signals reflecting reward uncertainty. Phil. Trans. R. Soc. Lond. B 363, 3801–3811 (2008).

    Article  Google Scholar 

  10. Tversky, A. & Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Science 185, 1124–1131 (1974).

    Article  CAS  Google Scholar 

  11. Rushworth, M.F. & Behrens, T.E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  Google Scholar 

  12. Preuschoff, K. & Bossaerts, P. Adding prediction risk to the theory of reward learning. Ann. NY Acad. Sci. 1104, 135–146 (2007).

    Article  Google Scholar 

  13. Monosov, I.E. & Hikosaka, O. Regionally distinct processing of rewards and punishments by the primate ventromedial prefrontal cortex. J. Neurosci. 32, 10318–10330 (2012).

    Article  CAS  Google Scholar 

  14. Fiorillo, C.D., Tobler, P.N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  Google Scholar 

  15. McCoy, A.N. & Platt, M.L. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8, 1220–1227 (2005).

    Article  CAS  Google Scholar 

  16. O'Neill, M. & Schultz, W. Coding of reward risk by orbitofrontal neurons is mostly distinct from coding of reward value. Neuron 68, 789–800 (2010).

    Article  CAS  Google Scholar 

  17. Preuschoff, K., Quartz, S.R. & Bossaerts, P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 28, 2745–2752 (2008).

    Article  CAS  Google Scholar 

  18. Christopoulos, G.I., Tobler, P.N., Bossaerts, P., Dolan, R.J. & Schultz, W. Neural correlates of value, risk, and risk aversion contributing to decision making under risk. J. Neurosci. 29, 12574–12583 (2009).

    Article  CAS  Google Scholar 

  19. Preuschoff, K., Bossaerts, P. & Quartz, S.R. Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51, 381–390 (2006).

    Article  CAS  Google Scholar 

  20. Ogawa, M. et al. Risk-responsive orbitofrontal neurons track acquired salience. Neuron 77, 251–258 (2013).

    Article  CAS  Google Scholar 

  21. Hsu, M., Bhatt, M., Adolphs, R., Tranel, D. & Camerer, C.F. Neural systems responding to degrees of uncertainty in human decision-making. Science 310, 1680–1683 (2005).

    Article  CAS  Google Scholar 

  22. Risold, P.Y. & Swanson, L.W. Connections of the rat lateral septal complex. Brain Res. Brain Res. Rev. 24, 115–195 (1997).

    Article  CAS  Google Scholar 

  23. Gray, J.A. & McNaughton, N. Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neurosci. Biobehav. Rev. 7, 119–188 (1983).

    Article  CAS  Google Scholar 

  24. Risold, P.Y. & Swanson, L.W. Chemoarchitecture of the rat lateral septal nucleus. Brain Res. Brain Res. Rev. 24, 91–113 (1997).

    Article  CAS  Google Scholar 

  25. McNaughton, N. & Gray, J.A. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. J. Affect. Disord. 61, 161–176 (2000).

    Article  CAS  Google Scholar 

  26. Menard, J. & Treit, D. Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests. Physiol. Behav. 60, 845–853 (1996).

    Article  CAS  Google Scholar 

  27. Nishijo, H. et al. Motivation-related neuronal activity in the object discrimination task in monkey septal nuclei. Hippocampus 7, 536–548 (1997).

    Article  CAS  Google Scholar 

  28. Nishijo, H. et al. Septal neuronal responses related to spatial representation in monkeys. Hippocampus 7, 460–464 (1997).

    Article  CAS  Google Scholar 

  29. Matsumoto, M. & Hikosaka, O. Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12, 77–84 (2009).

    Article  CAS  Google Scholar 

  30. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  31. Esber, G.R. & Haselgrove, M. Reconciling the influence of predictiveness and uncertainty on stimulus salience: a model of attention in associative learning. Proc. Biol. Sci. 278, 2553–2561 (2011).

    Article  Google Scholar 

  32. Anselme, P. The uncertainty processing theory of motivation. Behav. Brain Res. 208, 291–310 (2010).

    Article  Google Scholar 

  33. Weber, E.U., Shafir, S. & Blais, A.R. Predicting risk sensitivity in humans and lower animals: risk as variance or coefficient of variation. Psychol. Rev. 111, 430–445 (2004).

    Article  Google Scholar 

  34. Neuringer, A. Operant variability: evidence, functions, and theory. Psychon. Bull. Rev. 9, 672–705 (2002).

    Article  Google Scholar 

  35. Sheehan, T.P., Chambers, R.A. & Russell, D.S. Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res. Brain Res. Rev. 46, 71–117 (2004).

    Article  Google Scholar 

  36. Powell, E.W. Limbic projections to the thalamus. Exp. Brain Res. 17, 394–401 (1973).

    Article  CAS  Google Scholar 

  37. Vogt, B.A., Pandya, D.N. & Rosene, D.L. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262, 256–270 (1987).

    Article  CAS  Google Scholar 

  38. Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R.J. & Reinoso-Suarez, F. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb. Cortex 10, 220–242 (2000).

    Article  CAS  Google Scholar 

  39. Staiger, J.F. & Nurnberger, F. The efferent connections of the lateral septal nucleus in the guinea pig: intrinsic connectivity of the septum and projections to other telencephalic areas. Cell Tissue Res. 264, 415–426 (1991).

    Article  CAS  Google Scholar 

  40. Swanson, L.W. & Cowan, W.M. The connections of the septal region in the rat. J. Comp. Neurol. 186, 621–655 (1979).

    Article  CAS  Google Scholar 

  41. Vogt, B.A., Finch, D.M. & Olson, C.R. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2, 435–443 (1992).

    CAS  PubMed  Google Scholar 

  42. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  Google Scholar 

  43. Tsuchida, A., Doll, B.B. & Fellows, L.K. Beyond reversal: a critical role for human orbitofrontal cortex in flexible learning from probabilistic feedback. J. Neurosci. 30, 16868–16875 (2010).

    Article  CAS  Google Scholar 

  44. Walton, M.E., Behrens, T.E., Noonan, M.P. & Rushworth, M.F. Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. Ann. NY Acad. Sci. 1239, 14–24 (2011).

    Article  Google Scholar 

  45. Ressler, K.J. & Mayberg, H.S. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat. Neurosci. 10, 1116–1124 (2007).

    Article  CAS  Google Scholar 

  46. Schmitz, A. & Grillon, C. Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU-threat test). Nat. Protoc. 7, 527–532 (2012).

    Article  CAS  Google Scholar 

  47. Coates, J.M. & Herbert, J. Endogenous steroids and financial risk taking on a London trading floor. Proc. Natl. Acad. Sci. USA 105, 6167–6172 (2008).

    Article  CAS  Google Scholar 

  48. Rosen, J.B. & Schulkin, J. From normal fear to pathological anxiety. Psychol. Rev. 105, 325–350 (1998).

    Article  CAS  Google Scholar 

  49. Daye, P.M., Monosov, I.E., Hikosaka, O., Leopold, D.A. & Optican, L.M. pyElectrode: an open-source tool using structural MRI for electrode positioning and neuron mapping. J. Neurosci. Methods 213, 123–131 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Bromberg-Martin, B. Cumming, P. Daye, A. Ghazizadeh, S. Hong, H. Kim, D. Leopold, P. Rudebeck, K. Saleem, Y. Tachibana, R. Wurtz, S. Yamamoto and M. Yasuda for valuable scientific discussions, D. Leopold, F. Ye and C. Zhu for excellent MRI services and advice, M. Smith for histological expertise and service, and A. Hays, J. McClurkin, B. Nagy, N. Nichols, D. Parker and T. Ruffner for technical support. This work was supported by the intramural research program at the US National Eye Institute.

Author information

Authors and Affiliations

Authors

Contributions

I.E.M. initiated the experiments, performed the experiments and analyzed the data in consultation with O.H.; I.E.M. and O.H. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Ilya E Monosov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2830 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monosov, I., Hikosaka, O. Selective and graded coding of reward uncertainty by neurons in the primate anterodorsal septal region. Nat Neurosci 16, 756–762 (2013). https://doi.org/10.1038/nn.3398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing