Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex

Abstract

Ongoing sensory input is critical for shaping internal representations of the external world. Conversely, a lack of sensory input can profoundly perturb the formation of these representations. The olfactory system is particularly vulnerable to sensory deprivation, owing to the widespread prevalence of allergic, viral and chronic rhinosinusitis, but how the brain encodes and maintains odor information under such circumstances remains poorly understood. Here we combined functional magnetic resonance imaging (fMRI) with multivariate (pattern-based) analyses and psychophysical approaches to show that a 7-d period of olfactory deprivation induces reversible changes in odor-evoked fMRI activity in piriform cortex and orbitofrontal cortex (OFC). Notably, multivoxel ensemble codes of odor quality in OFC became decorrelated after deprivation, and the magnitude of these changes predicted subsequent olfactory perceptual plasticity. Our findings suggest that transient changes in these key olfactory brain regions are instrumental in sustaining odor perception integrity in the wake of disrupted sensory input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: Rhinological data and nasal endoscopic measurements.
Figure 3: fMRI experiment 1: univariate fMRI results.
Figure 4: fMRI experiment 2: behavioral and multivariate fMRI results.
Figure 5: General deprivation-related changes in fMRI ensemble activity (fMRI experiment 2).

Similar content being viewed by others

References

  1. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  2. Van der Loos, H. & Woolsey, T.A. Somatosensory cortex: structural alterations following early injury to sense organs. Science 179, 395–398 (1973).

    Article  CAS  Google Scholar 

  3. Merzenich, M.M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984).

    Article  CAS  Google Scholar 

  4. Hubel, D.H. & Wiesel, T.N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  5. Linkenhoker, B.A. & Knudsen, E.I. Incremental training increases the plasticity of the auditory space map in adult barn owls. Nature 419, 293–296 (2002).

    Article  CAS  Google Scholar 

  6. Scheiman, M.M. et al. Randomized trial of treatment of amblyopia in children aged 7 to 17 years. Arch. Ophthalmol. 123, 437–447 (2005).

    Article  Google Scholar 

  7. Li, W., Howard, J.D., Parrish, T.B. & Gottfried, J.A. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science 319, 1842–1845 (2008).

    Article  CAS  Google Scholar 

  8. Li, W., Luxenberg, E., Parrish, T. & Gottfried, J.A. Learning to smell the roses: experience-dependent neural plasticity in human piriform and orbitofrontal cortices. Neuron 52, 1097–1108 (2006).

    Article  CAS  Google Scholar 

  9. Hofer, S.B., Mrsic-Flogel, T.D., Bonhoeffer, T. & Hubener, M. Prior experience enhances plasticity in adult visual cortex. Nat. Neurosci. 9, 127–132 (2006).

    Article  CAS  Google Scholar 

  10. Wilson, D.A. & Wood, J.G. Functional consequences of unilateral olfactory deprivation: time-course and age sensitivity. Neuroscience 49, 183–192 (1992).

    Article  CAS  Google Scholar 

  11. Maruniak, J.A., Taylor, J.A., Henegar, J.R. & Williams, M.B. Unilateral naris closure in adult mice: atrophy of the deprived-side olfactory bulbs. Brain Res. Dev. Brain Res. 47, 27–33 (1989).

    Article  CAS  Google Scholar 

  12. Corotto, F.S., Henegar, J.R. & Maruniak, J.A. Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse. Neuroscience 61, 739–744 (1994).

    Article  CAS  Google Scholar 

  13. Best, A.R. & Wilson, D.A. A postnatal sensitive period for plasticity of cortical afferents but not cortical association fibers in rat piriform cortex. Brain Res. 961, 81–87 (2003).

    Article  CAS  Google Scholar 

  14. Livneh, Y. & Mizrahi, A. Experience-dependent plasticity of mature adult-born neurons. Nat. Neurosci. 15, 26–28 (2012).

    Article  CAS  Google Scholar 

  15. Boroojerdi, B. et al. Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb. Cortex 10, 529–534 (2000).

    Article  CAS  Google Scholar 

  16. Pitskel, N.B., Merabet, L.B., Ramos-Estebanez, C., Kauffman, T. & Pascual-Leone, A. Time-dependent changes in cortical excitability after prolonged visual deprivation. Neuroreport 18, 1703–1707 (2007).

    Article  Google Scholar 

  17. Pantev, C., Wollbrink, A., Roberts, L.E., Engelien, A. & Lutkenhoner, B. Short-term plasticity of the human auditory cortex. Brain Res. 842, 192–199 (1999).

    Article  CAS  Google Scholar 

  18. Rossini, P.M. et al. Short-term brain 'plasticity' in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia. Brain Res. 642, 169–177 (1994).

    Article  CAS  Google Scholar 

  19. Sireteanu, R., Oertel, V., Mohr, H., Linden, D. & Singer, W. Graphical illustration and functional neuroimaging of visual hallucinations during prolonged blindfolding: a comparison to visual imagery. Perception 37, 1805–1821 (2008).

    Article  Google Scholar 

  20. Merabet, L.B. & Pascual-Leone, A. Neural reorganization following sensory loss: the opportunity of change. Nat. Rev. Neurosci. 11, 44–52 (2010).

    Article  CAS  Google Scholar 

  21. Lledo, P.M. & Saghatelyan, A. Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28, 248–254 (2005).

    Article  CAS  Google Scholar 

  22. Graziadei, P.P. & Graziadei, G.A. Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1–18 (1979).

    Article  CAS  Google Scholar 

  23. Weiler, E. & Farbman, A.I. Proliferation in the rat olfactory epithelium: age-dependent changes. J. Neurosci. 17, 3610–3622 (1997).

    Article  CAS  Google Scholar 

  24. Angely, C.J. & Coppola, D.M. How does long-term odor deprivation affect the olfactory capacity of adult mice? Behav. Brain Funct. 6, 26 (2010).

    Article  Google Scholar 

  25. Guthrie, K.M., Wilson, D.A. & Leon, M. Early unilateral deprivation modifies olfactory bulb function. J. Neurosci. 10, 3402–3412 (1990).

    Article  CAS  Google Scholar 

  26. Hunt, N.L. & Slotnick, B.M. Functional capacity of the rat olfactory bulb after neonatal naris occlusion. Chem. Senses 16, 131–142 (1991).

    Article  Google Scholar 

  27. Kim, H.H., Puche, A.C. & Margolis, F.L. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex. J. Neurosci. 26, 9548–9559 (2006).

    Article  CAS  Google Scholar 

  28. Wilson, D.A., Best, A.R. & Brunjes, P.C. Trans-neuronal modification of anterior piriform cortical circuitry in the rat. Brain Res. 853, 317–322 (2000).

    Article  CAS  Google Scholar 

  29. Wilson, D.A. & Sullivan, R.M. The D2 antagonist spiperone mimics the effects of olfactory deprivation on mitral/tufted cell odor response patterns. J. Neurosci. 15, 5574–5581 (1995).

    Article  CAS  Google Scholar 

  30. Brunjes, P.C. & Borror, M.J. Unilateral odor deprivation: differential effects due to time of treatment. Brain Res. Bull. 11, 501–503 (1983).

    Article  CAS  Google Scholar 

  31. Luskin, M.B. & Price, J.L. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216, 264–291 (1983).

    Article  CAS  Google Scholar 

  32. Friston, K.J., Penny, W.D. & Glaser, D.E. Conjunction revisited. Neuroimage 25, 661–667 (2005).

    Article  Google Scholar 

  33. Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J.B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).

    Article  Google Scholar 

  34. Esterman, M., Tamber-Rosenau, B.J., Chiu, Y.C. & Yantis, S. Avoiding non-independence in fMRI data analysis: leave one subject out. Neuroimage 50, 572–576 (2010).

    Article  Google Scholar 

  35. Worsley, K.J. et al. A unified statistical approach for determining significant signals in images of cerebral activation. Hum. Brain Mapp. 4, 58–73 (1996).

    Article  CAS  Google Scholar 

  36. Howard, J.D., Plailly, J., Grueschow, M., Haynes, J.D. & Gottfried, J.A. Odor quality coding and categorization in human posterior piriform cortex. Nat. Neurosci. 12, 932–938 (2009).

    Article  CAS  Google Scholar 

  37. Rolls, E.T., Grabenhorst, F. & Parris, B.A. Neural systems underlying decisions about affective odors. J. Cogn. Neurosci. 22, 1069–1082 (2010).

    Article  Google Scholar 

  38. Zelano, C., Mohanty, A. & Gottfried, J.A. Olfactory predictive codes and stimulus templates in piriform cortex. Neuron 72, 178–187 (2011).

    Article  CAS  Google Scholar 

  39. Illig, K.R. Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in olfactory information processing. J. Comp. Neurol. 488, 224–231 (2005).

    Article  Google Scholar 

  40. Cohen, Y., Reuveni, I., Barkai, E. & Maroun, M. Olfactory learning-induced long-lasting enhancement of descending and ascending synaptic transmission to the piriform cortex. J. Neurosci. 28, 6664–6669 (2008).

    Article  CAS  Google Scholar 

  41. Carmichael, S.T., Clugnet, M.C. & Price, J.L. Central olfactory connections in the macaque monkey. J. Comp. Neurol. 346, 403–434 (1994).

    Article  CAS  Google Scholar 

  42. Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. II. Ensemble activity in orbitofrontal cortex. J. Neurophysiol. 74, 751–762 (1995).

    Article  CAS  Google Scholar 

  43. Critchley, H.D. & Rolls, E.T. Olfactory neuronal responses in the primate orbitofrontal cortex: analysis in an olfactory discrimination task. J. Neurophysiol. 75, 1659–1672 (1996).

    Article  CAS  Google Scholar 

  44. Roesch, M.R., Stalnaker, T.A. & Schoenbaum, G. Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning. Cereb. Cortex 17, 643–652 (2007).

    Article  Google Scholar 

  45. van Wingerden, M., Vinck, M., Lankelma, J. & Pennartz, C.M. Theta-band phase locking of orbitofrontal neurons during reward expectancy. J. Neurosci. 30, 7078–7087 (2010).

    Article  CAS  Google Scholar 

  46. Plailly, J., Howard, J.D., Gitelman, D.R. & Gottfried, J.A. Attention to odor modulates thalamocortical connectivity in the human brain. J. Neurosci. 28, 5257–5267 (2008).

    Article  CAS  Google Scholar 

  47. Waggener, C.T. & Coppola, D.M. Naris occlusion alters the electro-olfactogram: evidence for compensatory plasticity in the olfactory system. Neurosci. Lett. 427, 112–116 (2007).

    Article  CAS  Google Scholar 

  48. Korol, D.L. & Brunjes, P.C. Rapid changes in 2-deoxyglucose uptake and amino acid incorporation following unilateral odor deprivation: a laminar analysis. Brain Res. Dev. Brain Res. 52, 75–84 (1990).

    Article  CAS  Google Scholar 

  49. Philpot, B.D., Foster, T.C. & Brunjes, P.C. Mitral/tufted cell activity is attenuated and becomes uncoupled from respiration following naris closure. J. Neurobiol. 33, 374–386 (1997).

    Article  CAS  Google Scholar 

  50. Holbrook, E.H. & Leopold, D.A. An updated review of clinical olfaction. Curr. Opin. Otolaryngol. Head Neck Surg. 14, 23–28 (2006).

    Article  Google Scholar 

  51. Hilberg, O. Objective measurement of nasal airway dimensions using acoustic rhinometry: methodological and clinical aspects. Allergy 57 (suppl. 70): 5–39 (2002).

    Article  Google Scholar 

  52. Hasegawa, M. & Kern, E.B. The human nasal cycle. Mayo Clin. Proc. 52, 28–34 (1977).

    CAS  PubMed  Google Scholar 

  53. Doty, R.L., Shaman, P., Kimmelman, C.P. & Dann, M.S. University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. Laryngoscope 94, 176–178 (1984).

    Article  CAS  Google Scholar 

  54. Hummel, T., Sekinger, B., Wolf, S.R., Pauli, E. & Kobal, G. 'Sniffin' Sticks': olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).

    Article  CAS  Google Scholar 

  55. Bartoshuk, L.M. The psychophysics of taste. Am. J. Clin. Nutr. 31, 1068–1077 (1978).

    Article  CAS  Google Scholar 

  56. Finnell, J.T., Knopp, R., Johnson, P., Holland, P.C. & Schubert, W. A calibrated paper clip is a reliable measure of two-point discrimination. Acad. Emerg. Med. 11, 710–714 (2004).

    Article  Google Scholar 

  57. Benton, A.L., Varney, N.R. & Hamsher, K.D. Visuospatial judgment. A clinical test. Arch. Neurol. 35, 364–367 (1978).

    Article  CAS  Google Scholar 

  58. Gottfried, J.A., Deichmann, R., Winston, J.S. & Dolan, R.J. Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J. Neurosci. 22, 10819–10828 (2002).

    Article  CAS  Google Scholar 

  59. Gottfried, J.A. & Zald, D.H. On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Res. Brain Res. Rev. 50, 287–304 (2005).

    Article  Google Scholar 

  60. Mai, J.K., Assheuer, J. & Paxinos, G. Atlas of the Human Brain viii (Academic Press, San Diego, 1997).

Download references

Acknowledgements

The authors would like to thank M. Cahill for assistance in nasal endoscopy and acoustic rhinometry measurements, N. Sandalow and K. Phillips for technical assistance and data collection, and S. Warrenburg (International Flavors and Fragrances) for providing the odorless grade solvents. This work was supported by Northwestern Institutional Predoctoral Training Awards to K.N.W. (T32NS047987) and to J.D.H. (2T32 MH067564), grants R01DC010014 and K08DC007653 from the US National Institute on Deafness and Other Communication Disorders to J.A.G., and US National Institutes of Health grant M01-RR00048 from the National Center for Research Resources to Northwestern University Feinberg School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

J.A.G. conceived the experiment, with extensive contributions and methodological suggestions from K.N.W., D.B.C. and J.D.H. K.N.W. collected the imaging and behavioral data. D.B.C. and B.K.T. collected and analyzed the nasal endoscopy and rhinometry data. K.N.W. analyzed the behavioral and imaging data with assistance from J.D.H. and J.A.G. K.N.W., J.D.H. and J.A.G. wrote the manuscript.

Corresponding authors

Correspondence to Keng Nei Wu or Jay A Gottfried.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–2 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, K., Tan, B., Howard, J. et al. Olfactory input is critical for sustaining odor quality codes in human orbitofrontal cortex. Nat Neurosci 15, 1313–1319 (2012). https://doi.org/10.1038/nn.3186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing