Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain

Abstract

Axonal degeneration is important during development but has not been thought to function in the intact mature nervous system. Here, we provide evidence that degeneration of adult axons occurs in the intact rodent brain through a p75 neurotrophin receptor (p75NTR)- and myelin-dependent mechanism. Specifically, we show that p75NTR-mediated axonal degeneration prevents septal cholinergic axons from aberrantly growing onto myelinated tracts in vivo or on a myelin substrate in culture. Myelin also triggers local degeneration of p75NTR-expressing sympathetic axons that is rescued by increasing TrkA signaling or elevating intracellular cyclic AMP. Myelin-mediated degeneration occurs when neurotrophins bind to p75NTR, and involves p75NTR-dependent sequestration of Rho guanine nucleotide dissociation inhibitor (Rho-GDI). Moreover, degeneration, but not growth inhibition, requires downstream activation of Rho and caspase-6. These data indicate that p75NTR maintains the specificity of neural connectivity by preventing inappropriate sprouting onto myelinated tracts and provide a physiological explanation for myelin inhibition after neural injury.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p75NTR inhibits the growth of septal cholinergic axons on the mature corpus callosum.
Figure 2: Myelin induces degeneration of septal cholinergic axons in low NGF in a p75NTR-dependent fashion.
Figure 3: Myelin induces local degeneration of sympathetic axons, and this can be rescued by high NGF or elevated intracellular cAMP.
Figure 4: Myelin-induced local sympathetic axon degeneration is p75NTR dependent.
Figure 5: Myelin-induced axonal degeneration requires neurotrophin binding to p75NTR.
Figure 6: p75NTR causes axonal degeneration through a Rho-GDI–Rho–caspase-6 pathway.

Similar content being viewed by others

References

  1. Singh, K.K. et al. Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat. Neurosci. 11, 649–658 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  3. Lyon, M.F., Ogunkolade, B.W., Brown, M.C., Atherton, D.J. & Perry, V.H. A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4. Proc. Natl. Acad. Sci. USA 90, 9717–9720 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Mack, T.G. et al. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4, 1199–1206 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Nikolaev, A., McLaughlin, T., O'Leary, D.D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Singh, K.K. & Miller, F.D. Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron 45, 837–845 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, L. et al. Genetic modulation of BDNF signaling affects the outcome of axonal competition in vivo. Curr. Biol. 17, 911–921 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Plachta, N. et al. Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat. Neurosci. 10, 712–719 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Yiu, G. & He, Z. Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617–627 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Filbin, M.T. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat. Rev. Neurosci. 4, 703–713 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Atwal, J.K. et al. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322, 967–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Wong, S.T. et al. A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. Nat. Neurosci. 5, 1302–1308 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cai, D., Shen, Y., De Bellard, M., Tang, S. & Filbin, M.T. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 22, 89–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Woolf, N.J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 37, 475–524 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, K.F., Bachman, K., Landis, S. & Jaenisch, R. Dependence on p75 for innervation of some sympathetic targets. Science 263, 1447–1449 (1994).

    Article  CAS  Google Scholar 

  16. Schnitzler, A.C., Lopez-Coviella, I. & Blusztajn, J.K. Purification and culture of nerve growth factor receptor (p75)-expressing basal forebrain cholinergic neurons. Nat. Protoc. 3, 34–40 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Castren, E., Thoenen, H. & Lindholm, D. Brain-derived neurotrophic factor messenger RNA is expressed in the septum, hypothalamus and in adrenergic brain stem nuclei of adult rat brain and is increased by osmotic stimulation in the paraventricular nucleus. Neuroscience 64, 71–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Kohn, J., Aloyz, R.S., Toma, J.G., Haak-Frendscho, M. & Miller, F.D. Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J. Neurosci. 19, 5393–5408 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Crutcher, K.A. Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: extensive growth on gray matter but little growth on white matter. Exp. Neurol. 104, 39–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Savio, T. & Schwab, M.E. Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth. J. Neurosci. 9, 1126–1133 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Belliveau, D.J. et al. NGF and neurotrophin-3 both activate TrkA on sympathetic neurons but differentially regulate survival and neuritogenesis. J. Cell Biol. 136, 375–388 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Hibbert, A.P., Kramer, B.M., Miller, F.D. & Kaplan, D.R. The localization, trafficking and retrograde transport of BDNF bound to p75NTR in sympathetic neurons. Mol. Cell. Neurosci. 32, 387–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ma, Y., Campenot, R.B. & Miller, F.D. Concentration-dependent regulation of neuronal gene expression by nerve growth factor. J. Cell Biol. 117, 135–141 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Campenot, R.B., Lund, K. & Mok, S.A. Production of compartmented cultures of rat sympathetic neurons. Nat. Protoc. 4, 1869–1887 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Causing, C.G. et al. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 18, 257–267 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yamashita, T. & Tohyama, M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nat. Neurosci. 6, 461–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Aktories, K., Braun, U., Rosener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Roux, P.P., Colicos, M.A., Barker, P.A. & Kennedy, T.E. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J. Neurosci. 19, 6887–6896 (1999).

    Article  CAS  Google Scholar 

  29. Kokaia, Z., Andsberg, G., Martinez-Serrano, A. & Lindvall, O. Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84, 1113–1125 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Bamji, S.X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Majdan, M., Walsh, G.S., Aloyz, R. & Miller, F.D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155, 1275–1285 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Deppmann, C.D. et al. A model for neuronal competition during development. Science 320, 369–373 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Yeo, T.T. et al. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J. Neurosci. 17, 7594–7605 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Schwab, M.E. & Schnell, L. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J. Neurosci. 11, 709–721 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Walsh, G.S., Krol, K.M., Crutcher, K.A. & Kawaja, M.D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 19, 4155–4168 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Marinissen, M.J. et al. The small GTP-binding protein RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol. Cell 14, 29–41 (2004).

    Article  CAS  Google Scholar 

  37. Park, Y.J. et al. The RhoGDI-alpha/JNK signaling pathway plays a significant role in mycophenolic acid-induced apoptosis in an insulin-secreting cell line. Cell. Signal. 21, 356–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Aloyz, R.S. et al. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol. 143, 1691–1703 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Salehi, A.H., Xanthoudakis, S. & Barker, P.A. NRAGE, a p75 neurotrophin receptor-interacting protein, induces caspase activation and cell death through a JNK-dependent mitochondrial pathway. J. Biol. Chem. 277, 48043–48050 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Kanamoto, T. et al. Role of apoptosis signal-regulating kinase in regulation of the c-Jun N-terminal kinase pathway and apoptosis in sympathetic neurons. Mol. Cell. Biol. 20, 196–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kim, A.H. et al. Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35, 697–709 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Atwal, J.K., Massie, B., Miller, F.D. & Kaplan, D.R. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Lowry, K.S. et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 2, 127–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Naumann, T. et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci. 22, 2409–2418 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Aubert, I., Ridet, J.L., Schachner, M., Rougon, G. & Gage, F.H. Expression of L1 and PSA during sprouting and regeneration in the adult hippocampal formation. J. Comp. Neurol. 399, 1–19 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Schwab, M.E. & Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J. Neurosci. 8, 2381–2393 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Vaillant, A.R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146, 955–966 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Atwal, J.K., Singh, K.K., Tessier-Lavigne, M., Miller, F.D. & Kaplan, D.R. Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse. J. Neurosci. 23, 7602–7609 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Campenot, R.B., Walji, A.H. & Draker, D.D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J. Neurosci. 11, 1126–1139 (1991).

    Article  CAS  PubMed  Google Scholar 

  50. Zhai, Q. et al. Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron 39, 217–225 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Laver for helping with the time-course degeneration experiments, members of the Miller/Kaplan laboratory, J. Atwal, K. Coultes, L. Weng and J. Jordao for advice and technical assistance and P. Barker (McGill University) for p75NTR adenovirus. This work was supported by a grant from the Canadian Institutes of Health Research to F.D.M. and D.R.K. F.D.M. and D.R.K. are supported by the Canada Research Chairs program and F.D.M. by the Howard Hughes Medical Institute. K.J.P. was supported by an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

K.J.P. carried out all experiments and co-wrote the paper. C.A.G. participated in the in vivo analysis. I.A. supervised the septal cholinergic experiments. D.R.K. and F.D.M. co-supervised all experiments and co-wrote the paper.

Corresponding authors

Correspondence to David R Kaplan or Freda D Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K., Grosso, C., Aubert, I. et al. p75NTR-dependent, myelin-mediated axonal degeneration regulates neural connectivity in the adult brain. Nat Neurosci 13, 559–566 (2010). https://doi.org/10.1038/nn.2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing