Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker

Abstract

Sleep is a whole-organism phenomenon accompanied by global changes in neural activity. We previously identified SLEEPLESS (SSS) as a glycosylphosphatidyl inositol–anchored protein required for sleep in Drosophila. Here we found that SSS is critical for regulating the sleep-modulating potassium channel Shaker. SSS and Shaker shared similar expression patterns in the brain and specifically affected each other's expression levels. sleepless (sss) loss-of-function mutants exhibited altered Shaker localization, reduced Shaker current density and slower Shaker current kinetics. Transgenic expression of sss in sss mutants rescued defects in Shaker expression and activity cell-autonomously and suggested that SSS functions in wake-promoting, cholinergic neurons. In heterologous cells, SSS accelerated the kinetics of Shaker currents and was co-immunoprecipitated with Shaker, suggesting that SSS modulates Shaker activity via a direct interaction. SSS is predicted to belong to the Ly-6/neurotoxin superfamily, suggesting a mechanism for regulation of neuronal excitability by endogenous toxin-like molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue of the sleep phenotype of sss mutants with a UAS-sss transgene.
Figure 2: Distribution of SSS and Shaker immunoreactivity in the adult fly brain.
Figure 3: Shaker and SSS specifically affect each other's expression.
Figure 4: Altered Shaker expression and localization in sss mutants.
Figure 5: Rescue of Shaker expression in sss mutants by transgenic expression of sss.
Figure 6: Cell-autonomous rescue of the sss phenotypes at the Drosophila larval NMJ.
Figure 7: SSS modulates Shaker function.

Similar content being viewed by others

References

  1. Hendricks, J.C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).

    Article  CAS  Google Scholar 

  2. Shaw, P.J., Cirelli, C., Greenspan, R.J. & Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834–1837 (2000).

    Article  CAS  Google Scholar 

  3. Nitz, D.A., van Swinderen, B., Tononi, G. & Greenspan, R.J. Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr. Biol. 12, 1934–1940 (2002).

    Article  CAS  Google Scholar 

  4. Anderson, M.P. et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc. Natl. Acad. Sci. USA 102, 1743–1748 (2005).

    Article  CAS  Google Scholar 

  5. Bushey, D., Huber, R., Tononi, G. & Cirelli, C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J. Neurosci. 27, 5384–5393 (2007).

    Article  CAS  Google Scholar 

  6. Cueni, L. et al. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat. Neurosci. 11, 683–692 (2008).

    Article  CAS  Google Scholar 

  7. Espinosa, F., Marks, G., Heintz, N. & Joho, R.H. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav. 3, 90–100 (2004).

    Article  CAS  Google Scholar 

  8. Espinosa, F., Torres-Vega, M.A., Marks, G.A. & Joho, R.H. Ablation of Kv3.1 and Kv3.3 potassium channels disrupts thalamocortical oscillations in vitro and in vivo. J. Neurosci. 28, 5570–5581 (2008).

    Article  CAS  Google Scholar 

  9. Cirelli, C. et al. Reduced sleep in Drosophila Shaker mutants. Nature 434, 1087–1092 (2005).

    Article  CAS  Google Scholar 

  10. Douglas, C.L. et al. Sleep in Kcna2 knockout mice. BMC Biol. 5, 42 (2007).

    Article  Google Scholar 

  11. Koh, K. et al. Identification of SLEEPLESS, a sleep-promoting factor. Science 321, 372–376 (2008).

    Article  CAS  Google Scholar 

  12. Tsetlin, V. Snake venom alpha-neurotoxins and other 'three-finger' proteins. Eur. J. Biochem. 264, 281–286 (1999).

    Article  CAS  Google Scholar 

  13. Greenwald, J., Fischer, W.H., Vale, W.W. & Choe, S. Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. Nat. Struct. Biol. 6, 18–22 (1999).

    Article  CAS  Google Scholar 

  14. Huai, Q. et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science 311, 656–659 (2006).

    Article  CAS  Google Scholar 

  15. Klein, D.E., Stayrook, S.E., Shi, F., Narayan, K. & Lemmon, M.A. Structural basis for EGFR ligand sequestration by Argos. Nature 453, 1271–1275 (2008).

    Article  CAS  Google Scholar 

  16. Albrand, J.P., Blackledge, M.J., Pascaud, F., Hollecker, M. & Marion, D. NMR and restrained molecular dynamics study of the three-dimensional solution structure of toxin FS2, a specific blocker of the L-type calcium channel, isolated from black mamba venom. Biochemistry 34, 5923–5937 (1995).

    Article  CAS  Google Scholar 

  17. Vacher, H., Mohapatra, D.P., Misonou, H. & Trimmer, J.S. Regulation of Kv1 channel trafficking by the mamba snake neurotoxin dendrotoxin K. FASEB J. 21, 906–914 (2007).

    Article  CAS  Google Scholar 

  18. Elliott, D.A. & Brand, A.H. The GAL4 system: a versatile system for the expression of genes. Methods Mol. Biol. 420, 79–95 (2008).

    Article  CAS  Google Scholar 

  19. Joiner, W.J., Crocker, A., White, B.H. & Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441, 757–760 (2006).

    Article  CAS  Google Scholar 

  20. Pitman, J.L., McGill, J.J., Keegan, K.P. & Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 441, 753–756 (2006).

    Article  CAS  Google Scholar 

  21. Chung, B.Y., Kilman, V.L., Keath, J.R., Pitman, J.L. & Allada, R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr. Biol. 19, 386–390 (2009).

    Article  CAS  Google Scholar 

  22. Foltenyi, K., Greenspan, R.J. & Newport, J.W. Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat. Neurosci. 10, 1160–1167 (2007).

    Article  CAS  Google Scholar 

  23. Parisky, K.M. et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60, 672–682 (2008).

    Article  CAS  Google Scholar 

  24. Shang, Y., Griffith, L.C. & Rosbash, M. Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc. Natl. Acad. Sci. USA 105, 19587–19594 (2008).

    Article  CAS  Google Scholar 

  25. Sheeba, V. et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545 (2008).

    Article  CAS  Google Scholar 

  26. Kaplan, W.D. & Trout, W.E. III. The behavior of four neurological mutants of Drosophila. Genetics 61, 399–409 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tanouye, M.A., Ferrus, A. & Fujita, S.C. Abnormal action potentials associated with the Shaker complex locus of Drosophila. Proc. Natl. Acad. Sci. USA 78, 6548–6552 (1981).

    Article  CAS  Google Scholar 

  28. Rogero, O., Hammerle, B. & Tejedor, F.J. Diverse expression and distribution of Shaker potassium channels during the development of the Drosophila nervous system. J. Neurosci. 17, 5108–5118 (1997).

    Article  CAS  Google Scholar 

  29. Hendricks, J.C. et al. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation and longevity in Drosophila melanogaster. J. Biol. Rhythms 18, 12–25 (2003).

    Article  CAS  Google Scholar 

  30. Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    Article  CAS  Google Scholar 

  31. Wu, M.N., Koh, K., Yue, Z., Joiner, W.J. & Sehgal, A. A genetic screen for sleep and circadian mutants reveals mechanisms underlying regulation of sleep in Drosophila. Sleep 31, 465–472 (2008).

    Article  Google Scholar 

  32. Wang, J.W., Humphreys, J.M., Phillips, J.P., Hilliker, A.J. & Wu, C.F. A novel leg-shaking Drosophila mutant defective in a voltage-gated K+ current and hypersensitive to reactive oxygen species. J. Neurosci. 20, 5958–5964 (2000).

    Article  CAS  Google Scholar 

  33. Kelley, L.A. & Sternberg, M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).

    Article  CAS  Google Scholar 

  34. Miwa, J.M. et al. lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23, 105–114 (1999).

    Article  CAS  Google Scholar 

  35. Eriksson, M.A. & Roux, B. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles. Biophys. J. 83, 2595–2609 (2002).

    Article  CAS  Google Scholar 

  36. Harvey, A.L. Twenty years of dendrotoxins. Toxicon 39, 15–26 (2001).

    Article  CAS  Google Scholar 

  37. Andretic, R., van Swinderen, B. & Greenspan, R.J. Dopaminergic modulation of arousal in Drosophila. Curr. Biol. 15, 1165–1175 (2005).

    Article  CAS  Google Scholar 

  38. Crocker, A. & Sehgal, A. Octopamine regulates sleep in Drosophila through protein kinase A–dependent mechanisms. J. Neurosci. 28, 9377–9385 (2008).

    Article  CAS  Google Scholar 

  39. Yuan, Q., Joiner, W.J. & Sehgal, A. A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr. Biol. 16, 1051–1062 (2006).

    Article  CAS  Google Scholar 

  40. Saper, C.B., Scammell, T.E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    Article  CAS  Google Scholar 

  41. Li, Y., Um, S.Y. & McDonald, T.V. Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist 12, 199–210 (2006).

    Article  CAS  Google Scholar 

  42. Misonou, H. & Trimmer, J.S. Determinants of voltage-gated potassium channel surface expression and localization in mammalian neurons. Crit. Rev. Biochem. Mol. Biol. 39, 125–145 (2004).

    Article  CAS  Google Scholar 

  43. Abbott, G.W. & Goldstein, S.A. Potassium channel subunits encoded by the KCNE gene family: physiology and pathophysiology of the MinK-related peptides (MiRPs). Mol. Interv. 1, 95–107 (2001).

    CAS  PubMed  Google Scholar 

  44. Gumley, T.P., McKenzie, I.F. & Sandrin, M.S. Tissue expression, structure and function of the murine Ly-6 family of molecules. Immunol. Cell Biol. 73, 277–296 (1995).

    Article  CAS  Google Scholar 

  45. Ibañez-Tallon, I. et al. Novel modulation of neuronal nicotinic acetylcholine receptors by association with the endogenous prototoxin lynx1. Neuron 33, 893–903 (2002).

    Article  Google Scholar 

  46. Boussy, T. et al. Genetic basis of ventricular arrhythmias. Cardiol. Clin. 26, 335–353 (2008).

    Article  Google Scholar 

  47. Catterall, W.A., Dib-Hajj, S., Meisler, M.H. & Pietrobon, D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J. Neurosci. 28, 11768–11777 (2008).

    Article  CAS  Google Scholar 

  48. Schopperle, W.M. et al. Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Neuron 20, 565–573 (1998).

    Article  CAS  Google Scholar 

  49. Zheng, X., Yang, Z., Yue, Z., Alvarez, J.D. & Sehgal, A. FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc. Natl. Acad. Sci. USA 104, 15899–15904 (2007).

    Article  CAS  Google Scholar 

  50. Feng, Y., Ueda, A. & Wu, C.F. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J. Neurogenet. 18, 377–402 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Levitan, J. Simpson, D. Bushey, B. Ganetzky, E. Rulifson, K. Kume, G. Korge and the Bloomington Stock Center for providing antibodies and fly stocks. We are grateful to T. Ferguson for help with oocyte preparation and M. Sowcik and R. Xu for technical assistance. This work was funded by a Burroughs-Wellcome Fund Career Award for Medical Scientists (M.N.W.), grants from the US National Institutes of Health (K08NS059671 to M.N.W., T32HL007953 to A. Pack, who supported T.D., R01GM057654 and R01GM078579 to T.H., P01AG017628 to A.S. and K.K., and R01GM088221 to K.K.), and a University Research Foundation Award from the University of Pennsylvania (K.K.). A.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.N.W., W.J.J. and K.K. conceived the study, in close consultation with A.S. M.N.W., W.J.J., T.D. and K.K. planned and performed the experiments, and analyzed the data with assistance from Z.Y., C.J.S. and D.C. T.H. provided supervision and advice for electrophysiological experiments. The manuscript was written principally by M.N.W. and K.K. with specific sections written by W.J.J. and T.D. and editorial changes made by A.S. and T.H.

Corresponding author

Correspondence to Kyunghee Koh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Joiner, W., Dean, T. et al. SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nat Neurosci 13, 69–75 (2010). https://doi.org/10.1038/nn.2454

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2454

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing