Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila

Abstract

Morning and evening circadian oscillators control the bimodal activity of Drosophila in light-dark cycles. The lateral neurons evening oscillator (LN-EO) is important for promoting diurnal activity at dusk. We found that the LN-EO autonomously synchronized to light-dark cycles through either the cryptochrome (CRY) that it expressed or the visual system. In conditions in which CRY was not activated, flies depleted for pigment-dispersing factor (PDF) or its receptor lost the evening activity and displayed reversed PER oscillations in the LN-EO. Rescue experiments indicated that normal PER cycling and the presence of evening activity relied on PDF secretion from the large ventral lateral neurons and PDF receptor function in the LN-EO. The LN-EO thus integrates light inputs and PDF signaling to control Drosophila diurnal behavior, revealing a new clock-independent function for PDF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the LN-MO and LN-EO.
Figure 2: Light entrainment of flies lacking either CRY or the visual system.
Figure 3: Light-dark activity and light entrainment of PDF-depleted flies.
Figure 4: Oscillations of PER levels in the clock neurons in the absence of PDF and/or CRY.
Figure 5: Averaged locomotor activity profiles of rescued pdf0cryb and pdfr mutants.
Figure 6: Light-dark activity of rescued pdf0cryb mutants and model for the new PDF function.

Similar content being viewed by others

References

  1. Dunlap, J.C., Loros, J.J. & DeCoursey, P.J. Chronobiology. Biological Timekeeping (Sinauer Associates, Sunderland, Massachusetts, 2004).

  2. Matsumoto, A., Matsumoto, N., Harui, Y., Sakomoto, M. & Tomioka, K. Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J. Insect Physiol. 44, 587–596 (1998).

    Article  CAS  Google Scholar 

  3. Majercak, J., Sidote, D., Hardin, P.E. & Edery, I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24, 219–230 (1999).

    Article  CAS  Google Scholar 

  4. Rieger, D., Stanewsky, R. & Helfrich-Förster, C. Cryptochrome, compound eyes, H-B eyelets and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms 18, 377–391 (2003).

    Article  CAS  Google Scholar 

  5. Stoleru, D. et al. The Drosophila circadian network is a seasonal timer. Cell 129, 207–219 (2007).

    Article  CAS  Google Scholar 

  6. Shafer, O.T., Helfrich-Forster, C., Renn, S.C. & Taghert, P.H. Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498, 180–193 (2006).

    Article  Google Scholar 

  7. Helfrich-Förster, C. et al. Development and morphology of the clock gene–expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol. 500, 47–70 (2007).

    Article  Google Scholar 

  8. Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).

    Article  CAS  Google Scholar 

  9. Klarsfeld, A. et al. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24, 1468–1477 (2004).

    Article  CAS  Google Scholar 

  10. Picot, M., Cusumano, P., Klarsfeld, A., Ueda, R. & Rouyer, F. Light activates output from evening neurons and inhibits output from morning neurons in the Drosophila circadian clock. PLoS Biol. 5, e315 (2007).

    Article  Google Scholar 

  11. Benito, J., Houl, J.H., Roman, G.W. & Hardin, P.E. The blue-light photoreceptor cryptochrome is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J. Biol. Rhythms 23, 296–307 (2008).

    Article  CAS  Google Scholar 

  12. Yoshii, T., Todo, T., Wulbeck, C., Stanewsky, R. & Helfrich-Forster, C. Cryptochrome is present in the compound eye and a subset of Drosophila's clock neurons. J. Comp. Neurol. 508, 952–966 (2008).

    Article  CAS  Google Scholar 

  13. Dubruille, R. & Emery, P. A plastic clock: how circadian rhythms respond to environmental cues in Drosophila. Mol. Neurobiol. 38, 129–145 (2008).

    Article  CAS  Google Scholar 

  14. Grima, B., Chélot, E., Xia, R. & Rouyer, F. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431, 869–873 (2004).

    Article  CAS  Google Scholar 

  15. Stoleru, D., Peng, P., Agosto, J. & Rosbash, M. Coupled oscillators control morning and evening locomotor behavior of Drosophila. Nature 431, 862–868 (2004).

    Article  CAS  Google Scholar 

  16. Stoleru, D., Peng, Y., Nawathean, P. & Rosbash, M. A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438, 238–242 (2005).

    Article  CAS  Google Scholar 

  17. Stanewsky, R. et al. The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95, 681–692 (1998).

    Article  CAS  Google Scholar 

  18. Emery, P., Stanewsky, R., Hall, J.C. & Rosbash, M. A unique circadian-rhythm photoreceptor. Nature 404, 456–457 (2000).

    Article  CAS  Google Scholar 

  19. Dolezelova, E., Dolezel, D. & Hall, J.C. Rhythm defects caused by newly engineered null mutations in Drosophila's cryptochrome gene. Genetics 177, 329–345 (2007).

    Article  CAS  Google Scholar 

  20. Shang, Y., Griffith, L.C. & Rosbash, M. Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc. Natl. Acad. Sci. USA 105, 19587–19594 (2008).

    Article  CAS  Google Scholar 

  21. Helfrich-Förster, C. et al. The extraretinal eyelet of Drosophila: development, ultrastructure and putative circadian function. J. Neurosci. 22, 9255–9266 (2002).

    Article  Google Scholar 

  22. Malpel, S., Klarsfeld, A. & Rouyer, F. Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with the clock neurons during Drosophila brain development. Development 129, 1443–1453 (2002).

    CAS  PubMed  Google Scholar 

  23. Veleri, S., Rieger, D., Helfrich-Forster, C. & Stanewsky, R. Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms 22, 29–42 (2007).

    Article  Google Scholar 

  24. Helfrich-Förster, C., Winter, C., Hofbauer, A., Hall, J.C. & Stanewsky, R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30, 249–261 (2001).

    Article  Google Scholar 

  25. Renn, S.C., Park, J.H., Rosbash, M., Hall, J.C. & Taghert, P.H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99, 791–802 (1999).

    Article  CAS  Google Scholar 

  26. Hyun, S. et al. Drosophila GPCR Han is a receptor for the circadian clock neuropeptide PDF. Neuron 48, 267–278 (2005).

    Article  CAS  Google Scholar 

  27. Lear, B.C. et al. A G protein–coupled receptor, groom-of-PDF, is required for PDF neuron action in circadian behavior. Neuron 48, 221–227 (2005).

    Article  CAS  Google Scholar 

  28. Mertens, I. et al. PDF receptor signaling in Drosophila contributes to both circadian and geotactic behaviors. Neuron 48, 213–219 (2005).

    Article  CAS  Google Scholar 

  29. Wu, Y., Cao, G. & Nitabach, M.N. Electrical silencing of PDF neurons advances the phase of non-PDF clock neurons in Drosophila. J. Biol. Rhythms 23, 117–128 (2008).

    Article  Google Scholar 

  30. Peng, Y., Stoleru, D., Levine, J.D., Hall, J.C. & Rosbash, M. Drosophila free-running rhythms require intercellular communication. PLoS Biol. 1, e13 (2003).

    Article  Google Scholar 

  31. Lin, Y., Stormo, G.D. & Taghert, P.H. The neuropeptide PDF coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24, 7951–7957 (2004).

    Article  CAS  Google Scholar 

  32. Shafer, O.T. et al. Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58, 223–237 (2008).

    Article  CAS  Google Scholar 

  33. Wülbeck, C., Grieshaber, E. & Helfrich-Forster, C. Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain. J. Biol. Rhythms 23, 409–424 (2008).

    Article  Google Scholar 

  34. Yoshii, T. et al. The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock. J. Neurosci. 29, 2597–2610 (2009).

    Article  CAS  Google Scholar 

  35. Hanai, S. & Ishida, N. Entrainment of Drosophila circadian clock to green and yellow light by Rh1, Rh5, Rh6 and CRY. Neuroreport 20, 755–758 (2009).

    Article  Google Scholar 

  36. Helfrich-Förster, C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 612–616 (1995).

    Article  Google Scholar 

  37. Park, J.H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 97, 3608–3613 (2000).

    Article  CAS  Google Scholar 

  38. Taghert, P.H. et al. Multiple amidated neuropeptides are required for normal circadian locomotor rhythms in Drosophila. J. Neurosci. 21, 6673–6686 (2001).

    Article  CAS  Google Scholar 

  39. Kaneko, M., Helfrich-Förster, C. & Hall, J.C. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 17, 6745–6760 (1997).

    Article  CAS  Google Scholar 

  40. Picot, M., Klarsfeld, A., Chélot, E., Malpel, S. & Rouyer, F. A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J. Neurosci. 29, 8312–8320 (2009).

    Article  CAS  Google Scholar 

  41. Sheeba, V. et al. Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr. Biol. 18, 1537–1545 (2008).

    Article  CAS  Google Scholar 

  42. Emery, P., So, W.V., Kaneko, M., Hall, J.C. & Rosbash, M. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95, 669–679 (1998).

    Article  CAS  Google Scholar 

  43. Fernández, M.P., Berni, J. & Ceriani, M.F. Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol. 6, e69 (2008).

    Article  Google Scholar 

  44. Sheeba, V., Gu, H., Sharma, V.K., O'Dowd, D.K. & Holmes, T.C. Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J. Neurophysiol. 99, 976–988 (2008).

    Article  Google Scholar 

  45. Mrosovsky, N. & Hattar, S. Diurnal mice (Mus musculus) and other examples of temporal niche switching. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 191, 1011–1024 (2005).

    Article  CAS  Google Scholar 

  46. Doyle, S.E., Yoshikawa, T., Hillson, H. & Menaker, M. Retinal pathways influence temporal niche. Proc. Natl. Acad. Sci. USA 105, 13133–13138 (2008).

    Article  CAS  Google Scholar 

  47. Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J. & Herzog, E.D. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat. Neurosci. 8, 476–483 (2005).

    Article  CAS  Google Scholar 

  48. Blanchardon, E. et al. Defining the role of Drosophila lateral neurons in the control of circadian activity and eclosion rhythms by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 13, 871–888 (2001).

    Article  CAS  Google Scholar 

  49. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  Google Scholar 

  50. Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: overlapping genomic fragments that restore circadian and ultradian rhythmicity to per0 and per- mutants. J. Neurogenet. 3, 249–291 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Boudinot for the FaasX software and ImageJ plugins, G. Levesque for helping with the behavioral setup, O. Lenoir and C. Lancelin for preliminary behavioral experiments and C. Vias for her help with dissections. We thank J. Champagnat for his strong support and M. Rosbash, Y. Shang and the members of the Rouyer laboratory for their comments on the manuscript. We are grateful to M. Ahmad, J. Hall, J. Kim, M. Rosbash, R. Stanewsky, P. Taghert and R. Ueda for providing material, stocks and reagents. This work was supported by Agence Nationale de la Recherche 'Neurosciences, neurologie et psychiatrie' and the European Union 6th framework project 'EUCLOCK'. P.C. was supported by EUCLOCK, M.P. by Ministère de l'Enseignement Supérieur et de la Recherche and Fondation pour le Recherche Médicale, B.R. by Ministère de l'Enseignement Supérieur et de la Recherche and Association pour la Recherche sur le Cancer, and F.R. by Institut National de la Santé et des Etudes et Recherches Médicale.

Author information

Authors and Affiliations

Authors

Contributions

P.C., A.K. and F.R. conceived and designed the experiments. P.C., A.K. and E.C. performed the experiments and analyzed the data. M.P. contributed to behavioral analyses. B.R. contributed to microscopy analysis. P.C., A.K. and F.R. wrote the paper.

Corresponding author

Correspondence to François Rouyer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–3 (PDF 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusumano, P., Klarsfeld, A., Chélot, E. et al. PDF-modulated visual inputs and cryptochrome define diurnal behavior in Drosophila. Nat Neurosci 12, 1431–1437 (2009). https://doi.org/10.1038/nn.2429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing