Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells

Abstract

The mechanisms that regulate symmetric, proliferative divisions versus asymmetric, neurogenic divisions of mammalian neural precursors are still not well understood. We found that Lfc (Arhgef2), a Rho-specific guanine nucleotide exchange factor that interacts with spindle microtubules, and its negative regulator Tctex-1 (Dynlt1) determine the genesis of neurons from precursors in the embryonic murine cortex. Specifically, genetic knockdown of Arhgef2 in cortical precursors either in culture or in vivo inhibited neurogenesis and maintained cells as cycling radial precursors. Conversely, genetic knockdown of Dynlt1 in radial precursors promoted neurogenesis and depleted cycling cortical precursors. Coincident silencing of these two genes indicated that Tctex-1 normally inhibits the genesis of neurons from radial precursors by antagonizing the proneurogenic actions of Lfc. Moreover, Lfc and Tctex-1 were required to determine the orientation of mitotic precursor cell divisions in vivo. Thus, Lfc and Tctex-1 interact to regulate cortical neurogenesis, potentially by regulating mitotic spindle orientation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lfc is expressed in radial precursors and early-born neurons during cortical development.
Figure 2: Genetic knockdown of Lfc inhibits neurogenesis in vivo.
Figure 3: Lfc knockdown causes persistent changes in neurogenesis.
Figure 4: Genetic knockdown of Lfc increases the proportion of cycling radial precursors but does not alter astrogenesis.
Figure 5: Genetic knockdown of Tctex-1, a negative regulator of Lfc, promotes cortical neurogenesis.
Figure 6: Genetic knockdown of Tctex-1 decreases the proportion of cycling radial precursors.
Figure 7: Coincident silencing of Lfc rescues the Tctex-1 knockdown phenotype.
Figure 8: Lfc 1 and Tctex-1 regulate mitotic spindle orientation in dividing cortical precursors.

Similar content being viewed by others

References

  1. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  2. Zhong, W. & Chia, W. Neurogenesis and asymmetric cell division. Curr. Opin. Neurobiol. 18, 4–11 (2008).

    Article  Google Scholar 

  3. Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    Article  CAS  Google Scholar 

  4. Gal, J.S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045–1056 (2006).

    Article  CAS  Google Scholar 

  5. Attardo, A., Calegari, F., Haubensak, W., Wilsch-Brauninger, M. & Huttner, W.B. Live imaging at the onset of cortical neurogenesis reveals differential appearance of the neuronal phenotype in apical versus basal progenitor progeny. PLoS One 3, e2388 (2008).

    Article  Google Scholar 

  6. Haydar, T.F., Ang, E., Jr. & Rakic, P. Mitotic spindle rotation and mode of cell division in the developing telecephalon. Proc. Natl. Acad. Sci. USA 100, 2890–2895 (2003).

    Article  CAS  Google Scholar 

  7. Bonfanti, L. & Peretto, P. Radial glial origin of the adult neural stem cells in the subventricular zone. Prog. Neurobiol. 83, 24–36 (2007).

    Article  CAS  Google Scholar 

  8. Guillemot, F. Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr. Opin. Cell Biol. 17, 639–647 (2005).

    Article  CAS  Google Scholar 

  9. Miller, F.D. & Gauthier, A.S. Timing is everything: making neurons versus glial in the developing cortex. Neuron 54, 357–369 (2007).

    Article  CAS  Google Scholar 

  10. Gönczy, P. Mechanisms of asymmetric cell division: flies and worms pave the way. Nat. Rev. Mol. Cell Biol. 9, 355–366 (2008).

    Article  Google Scholar 

  11. Farkas, L.M. & Huttner, W.B. The cell biology of neural stem and progenitor cells and its significance for their proliferation versus differentiation during mammalian brain development. Curr. Opin. Cell Biol. 20, 707–715 (2008).

    Article  CAS  Google Scholar 

  12. Benais-Pont, G. et al. Identification of a tight junction–associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J. Cell Biol. 160, 729–740 (2003).

    Article  CAS  Google Scholar 

  13. Bakal, C.J. et al. The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proc. Natl. Acad. Sci. USA 102, 9529–9534 (2005).

    Article  CAS  Google Scholar 

  14. Glaven, J.A., Whitehead, I.P., Nomanbhoy, T., Kay, R. & Cerione, R.A. Lfc and Lsc oncoproteins represent two new guanine nucleotide exchange factors for the Rho GTP-binding protein. J. Biol. Chem. 271, 27374–27381 (1996).

    Article  CAS  Google Scholar 

  15. Glaven, J.A., Whitehead, I., Bagrodia, S., Kay, R. & Cerione, R.A. The dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J. Biol. Chem. 274, 2279–2285 (1999).

    Article  CAS  Google Scholar 

  16. Krendel, M., Zenke, F.T. & Bokoch, G.M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat. Cell Biol. 4, 294–301 (2002).

    Article  CAS  Google Scholar 

  17. Dedesma, C., Chuang, J.-Z., Alfinito, P.D. & Sung, C.-H. Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J. Comp. Neurol. 496, 773–786 (2006).

    Article  CAS  Google Scholar 

  18. King, S.M. et al. The mouse t-complex–encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J. Biol. Chem. 271, 32281–32287 (1996).

    Article  CAS  Google Scholar 

  19. Sachdev, P. et al. G protein βγ subunit interaction with the dynein light-chain component tctex-1 regulates neurite outgrowth. EMBO J. 26, 2621–2632 (2007).

    Article  CAS  Google Scholar 

  20. Yoshizawa, M. et al. Dynamic and coordinated expression profile of dbl-family guanine nucleotide exchange factors in the developing mouse brain. Gene Expr. Patterns 3, 375–381 (2003).

    Article  CAS  Google Scholar 

  21. Barnabé-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    Article  Google Scholar 

  22. Gauthier, A.S. et al. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54, 245–262 (2007).

    Article  CAS  Google Scholar 

  23. Feng, L., Hatter, M.E. & Heintz, N. Brain lipid-binding protein (BLBP): a novel signlaling system in the developing mammalian CNS. Neuron 12, 895–908 (1994).

    Article  CAS  Google Scholar 

  24. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    Article  Google Scholar 

  25. Ryan, X.P. et al. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 47, 85–100 (2005).

    Article  CAS  Google Scholar 

  26. Haubensak, W., Attardo, A., Denk, W. & Huttner, B. Neurons arise in the basal neuroepithelium of the early mammalian telecephalon: a major site of neurogenesis. Proc. Natl. Acad. Sci. USA 101, 3196–3201 (2004).

    Article  CAS  Google Scholar 

  27. Chuang, J.Z., Milner, T.A. & Sung, C.H. Subunit heterogeneity of cytoplasmic dynein: differential expression of 14 kDa dynein light chains in rat hippocampus. J. Neurosci. 21, 5501–5512 (2001).

    Article  CAS  Google Scholar 

  28. Chuang, J.Z., Yeh, T.Y., Bollati., F., Conde, C., Canavosio, F., Caceres, A. & Sung, C.H. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86 (2005).

    Article  CAS  Google Scholar 

  29. Paquin, A., Barnabé-Heider, F., Kageyama, R. & Miller, F.D. CCAAT/enhancer-binding protein phosphorylation biases cortical precursors to generate neurons rather than astrocytes in vivo. J. Neurosci. 25, 10747–10758 (2005).

    Article  CAS  Google Scholar 

  30. Tai, A.W., Chuang, J.Z. & Sung, C.H. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity. J. Biol. Chem. 273, 19639–19649 (1998).

    Article  CAS  Google Scholar 

  31. Fish, J.L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W.B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl. Acad. Sci. USA 103, 10438–10443 (2006).

    Article  CAS  Google Scholar 

  32. Fish, J.L., Dehay, C., Kennedy, H. & Huttner, W.B. Making bigger brains—the evolution of neural progenitor–cell division. J. Cell Sci. 121, 2783–2793 (2008).

    Article  CAS  Google Scholar 

  33. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  Google Scholar 

  34. Olenik, C., Aktories, K. & Meyer, D.K. Differential expression of the small GTP-binding proteins RhoA, RhoB, Cdc42u and Cdc42b in developing rat neocortex. Brain Res. Mol. Brain Res. 70, 9–17 (1999).

    Article  CAS  Google Scholar 

  35. Narumiya, S. & Yasuda, S. Rho GTPases in animal cell mitosis. Curr. Opin. Cell Biol. 18, 199–205 (2006).

    Article  CAS  Google Scholar 

  36. Cappello, S. et al. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat. Neurosci. 9, 1099–1107 (2006).

    Article  CAS  Google Scholar 

  37. Roszko, I., Alfonso, C., Henrique, D. & Mathis, L. Key role played by RhoA in the balance between planar and apico-basal cell divisions in the chick neuroepithelium. Dev. Biol. 298, 212–224 (2006).

    Article  CAS  Google Scholar 

  38. Aijaz, S., D'Atri, F., Citi, S., Balda, M.S. & Matter, K. Binding of GEF-H1 to the tight junction–associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev. Cell 8, 777–786 (2005).

    Article  CAS  Google Scholar 

  39. Tai, A.W., Chuang, J.Z., Bode, C., Wolfrum, U. & Sung, C. H. Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877–887 (1999).

    Article  CAS  Google Scholar 

  40. Lanier, S.M. AGS proteins, GPR motifs and the signals processed by heterotrimeric G proteins. Biol. Cell 96, 369–372 (2004).

    Article  CAS  Google Scholar 

  41. Sanada, K.S. & Tsai, L.H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 122, 119–131 (2005).

    Article  CAS  Google Scholar 

  42. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C. & Ross, M.E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis-1–deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    Article  CAS  Google Scholar 

  43. Nguyen, L. et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202 (2001).

    Article  CAS  Google Scholar 

  44. Piao, X. et al. G protein–coupled receptor–dependent development of human frontal cortex. Science 303, 2033–2036 (2004).

    Article  CAS  Google Scholar 

  45. Estivill-Torrús, G. et al. Absence of LPA1 signaling results in defective cortical development. Cereb. Cortex 18, 938–950 (2008).

    Article  Google Scholar 

  46. Yano, H. et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J. Neurosci. 21, RC125 (2001).

    Article  CAS  Google Scholar 

  47. Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R. & Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369–4380 (2007).

    Article  CAS  Google Scholar 

  48. Machado, R.D. et al. C. Functional interaction between BMPR-II and tctex-1, a light chain of dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum. Mol. Genet. 12, 3277–3286 (2003).

    Article  CAS  Google Scholar 

  49. Li, W., Cogswell, C.A. & LoTurco, J.J. Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J. Neurosci. 18, 8853–8862 (1998).

    Article  CAS  Google Scholar 

  50. Gross, R.E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.H. Sung for his generous gift of the Tctex-1 antibody. We thank J. Biernaskie, K. Park, A. Paquin, S. Dugani, M. Fujitani, N. Fine and J. LaRose for their advice and assistance. This work was supported by a grant from the Canadian Institutes of Health Research (MOP-13958) to F.D.M. and D.R.K. F.D.M. and D.R.K. are Senior Canada Research Chairs and F.D.M. is a Howard Hughes Medical Institute International Research Scholar. A.G.-F. was supported by a studentship from the Natural Sciences and Engineering Research Council of Canada and by a Hospital for Sick Children Foundation studentship award. D.C.L. was supported by a post-doctoral fellowship from the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Contributions

A.G.-F. performed all of the in utero electroporations and in vivo analyses, the culture rescue experiments, the clonal analyses, the localization of Tctex-1 and co-wrote the paper. A.G.-F. contributed 60 data panels and A.G.-F. and/or D.C.L. contributed the remainder. D.C.L. prepared constructs, performed the western blots, analyzed Lfc expression in culture and co-wrote the paper. D.C.L. and A.G.-F. together carried out the culture analyses and the mitotic spindle counts. M.G. generated or provided constructs and antibodies. D.R.K., R.R. and F.D.M. all contributed intellectual guidance. D.R.K. and F.D.M. co-supervised all of the experiments. R.R. generated the initial hypothesis and co-supervised the biochemical experiments. F.D.M. co-wrote the paper.

Corresponding author

Correspondence to Freda D Miller.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 1677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauthier-Fisher, A., Lin, D., Greeve, M. et al. Lfc and Tctex-1 regulate the genesis of neurons from cortical precursor cells. Nat Neurosci 12, 735–744 (2009). https://doi.org/10.1038/nn.2339

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing