Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina

Abstract

In the mammalian retina, A17 amacrine cells provide reciprocal inhibitory feedback to rod bipolar cells, thereby shaping the time course of visual signaling in vivo. Previous results have indicated that A17 feedback can be triggered by Ca2+ influx through Ca2+-permeable AMPA receptors and can occur independently of voltage-gated Ca2+ (Cav) channels, whose presence and functional role in A17 dendrites have not yet been explored. We combined electrophysiology, calcium imaging and immunohistochemistry and found that L-type Cav channels in rat A17 amacrine cells were located at the sites of reciprocal synaptic feedback and that their contribution to GABA release was diminished by large-conductance Ca2+-activated potassium (BK) channels, which suppress postsynaptic depolarization in A17s and limit Cav channel activation. We also found that BK channels, by limiting GABA release from A17s, regulate the flow of excitatory synaptic transmission through the rod pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Voltage-gated calcium channels are colocalized with synaptic inputs at individual A17 varicosities.
Figure 2: Functional L-type voltage-gated calcium channels are expressed at A17 synaptic varicosities and somata.
Figure 3: Intracellular stores amplify voltage-dependent calcium responses in varicosities.
Figure 4: A17s varicosities express rapidly inactivating BK channels that are functionally coupled to L-type voltage-gated calcium channels.
Figure 5: BK channels suppress synaptic transmission.
Figure 6: BK channel–modulated Cav channels enhance GABA release from A17s.
Figure 7: Modification of AMPAR kinetics with cyclothiazide recruits Cav channel–dependent enhancement of GABA release.
Figure 8: BK channels in A17 amacrine cells modulate feedforward excitatory signaling at the RBC dyad.

Similar content being viewed by others

References

  1. Dunn, F.A., Doan, T., Sampath, A.P. & Rieke, F. Controlling the gain of rod-mediated signals in the mammalian retina. J. Neurosci. 26, 3959–3970 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartveit, E. Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. J. Neurophysiol. 81, 2923–2936 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Nelson, R. & Kolb, H. A17: a broad-field amacrine cell in the rod system of the cat retina. J. Neurophysiol. 54, 592–614 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Singer, J.H. & Diamond, J.S. Sustained Ca2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J. Neurosci. 23, 10923–10933 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dong, C.J. & Hare, W.A. Temporal modulation of scotopic visual signals by A17 amacrine cells in mammalian retina in vivo. J. Neurophysiol. 89, 2159–2166 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Chavez, A.E., Singer, J.H. & Diamond, J.S. Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature 443, 705–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Menger, N. & Wassle, H. Morphological and physiological properties of the A17 amacrine cell of the rat retina. Vis. Neurosci. 17, 769–780 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Faber, E.S., Delaney, A.J. & Sah, P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nat. Neurosci. 8, 635–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Hu, H. et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J. Neurosci. 21, 9585–9597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, S. & Shipley, M.T. Multiple conductances cooperatively regulate spontaneous bursting in mouse olfactory bulb external tufted cells. J. Neurosci. 28, 1625–1639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maher, B.J. & Westbrook, G.L. SK channel regulation of dendritic excitability and dendrodendritic inhibition in the olfactory bulb. J. Neurophysiol. 94, 3743–3750 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Ngo-Anh, T.J. et al. SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nat. Neurosci. 8, 642–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Raffaelli, G., Saviane, C., Mohajerani, M.H., Pedarzani, P. & Cherubini, E. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J. Physiol. (Lond.) 557, 147–157 (2004).

    Article  CAS  Google Scholar 

  14. Skinner, L.J. et al. Contribution of BK Ca2+-activated K+ channels to auditory neurotransmission in the guinea pig cochlea. J. Neurophysiol. 90, 320–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Womack, M.D. & Khodakhah, K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar purkinje neurons. J. Neurosci. 23, 2600–2607 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu, J.W. & Slaughter, M.M. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J. Neurosci. 25, 7660–7668 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hicks, G.A. & Marrion, N.V. Ca2+-dependent inactivation of large conductance Ca2+-activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J. Physiol. (Lond.) 508, 721–734 (1998).

    Article  CAS  Google Scholar 

  18. Orio, P., Rojas, P., Ferreira, G. & Latorre, R. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol. Sci. 17, 156–161 (2002).

    CAS  PubMed  Google Scholar 

  19. Wallner, M., Meera, P. & Toro, L. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc. Natl. Acad. Sci. USA 96, 4137–4142 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berkefeld, H. et al. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science 314, 615–620 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Marty, A. Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature 291, 497–500 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Meredith, A.L. et al. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat. Neurosci. 9, 1041–1049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, X., Gu, X.Q. & Haddad, G.G. Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. J. Neurosci. 23, 3639–3648 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, J., Li, W., Trexler, E.B. & Massey, S.C. Confocal analysis of reciprocal feedback at rod bipolar terminals in the rabbit retina. J. Neurosci. 22, 10871–10882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Partin, K.M., Patneau, D.K., Winters, C.A., Mayer, M.L. & Buonanno, A. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A. Neuron 11, 1069–1082 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Treiman, M., Caspersen, C. & Christensen, S.B. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol. Sci. 19, 131–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Mitra, P. & Slaughter, M.M. Mechanism of generation of spontaneous miniature outward currents (SMOCs) in retinal amacrine cells. J. Gen. Physiol. 119, 355–372 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Habermann, C.J., O'Brien, B.J., Wassle, H. & Protti, D.A. AII amacrine cells express L-type calcium channels at their output synapses. J. Neurosci. 23, 6904–6913 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh, K.K., Haverkamp, S. & Wassle, H. Glutamate receptors in the rod pathway of the mammalian retina. J. Neurosci. 21, 8636–8647 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Euler, T. & Masland, R.H. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83, 1817–1829 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, Y.W., Ding, J.P., Xia, X.M. & Lingle, C.J. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J. Neurosci. 22, 1550–1561 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X.L., Gao, F. & Wu, S.M. Non-linear, high-gain and sustained-to-transient signal transmission from rods to amacrine cells in dark-adapted retina of Ambystoma. J. Physiol. (Lond.) 539, 239–251 (2002).

    Article  CAS  Google Scholar 

  33. Ellias, S.A. & Stevens, J.K. The dendritic varicosity: a mechanism for electrically isolating the dendrites of cat retinal amacrine cells? Brain Res. 196, 365–372 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda, R. et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE 219, l5 (2004).

    Google Scholar 

Download references

Acknowledgements

We thank C. McBain for critically reading the manuscript, members of the Diamond and Isaac laboratories for helpful discussions and E. Compton-Daw for assistance with spectrophotometry. This work was supported by the US National Institute of Neurological Disorders and Stroke Intramural Research Program.

Author information

Authors and Affiliations

Authors

Contributions

W.N.G. conducted the electrophysiological and two-photon imaging experiments. W.L. carried out the immunohistochemistry experiments. A.E.C. performed preliminary electrophysiological experiments contributing to the formulation of the project. W.N.G., A.E.C. and J.S.D. designed the experiments. W.N.G. and J.S.D. wrote the manuscript.

Corresponding author

Correspondence to Jeffrey S Diamond.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimes, W., Li, W., Chávez, A. et al. BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat Neurosci 12, 585–592 (2009). https://doi.org/10.1038/nn.2302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing